

INVESTIGATION OF POLYBROMINATED FLAME RETARDANTS AND POTENTIALLY TOXIC METALS IN SOIL, SEDIMENT AND WATER OF THE OBAFEMI AWOLOWO UNIVERSITY DUMPSITE AND ITS RECEIVING STREAM.

BY

GODWIN OLADELE OLUTONA SCP11/12/R/0099 B.Sc. (Ed.) (Chemistry), Abuja; M.Sc. (Chemistry), Port-Harcourt; M.Phil. (Chemistry), Ife.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN CHEMISTRY TO THE DEPARTMENT OF CHEMISTRY, FACULTY OF SCIENCE, OBAFEMI AWOLOWO UNIVERSITY ILE-IFE, NIGERIA.

2015

CERTIFICATION

This research work by Godwin Oladele Olutona was carried out under our supervision in partial fulfillment of the requirements for the award of Ph.D. Degree in Chemistry of the Obafemi Awolowo University, Ile-Ife, Nigeria.

Prof. A .O. Ogunfowokan

Dr. J. A. O. Oyekunle

(Supervisor)

(Co-Supervisor)

Prof. A. O. Ogunfowokan

Head of Department

DEDICATION

This research work is dedicated to my biological father, **Mr. Stephen Omotayo Oguntona**, who has always encouraged me to pursue education to the peak. To **MANY** that is **UNKNOWN** in the academic profession but are **PRECIOUS GEMS!** To those who have **STRUGGLED** and **SUFFERED** in this noble **PROFESSION**. I salute your courage with deep dedication.

ACKNOWLEDGEMENTS

The eternal source of all knowledge and wisdom; honour, majesty and adoration be to your Holy name for giving me the strength to accomplish the present feat in spite of all obstacles. "For you, O God, tested me; you refined me like silver. You brought me into prison and laid burdens on my backs. You let men ride over my head, I went through fire and water but you brought me to a place of abundance" Psalms 66; 10-12 (NIV). Hallowed be to your holy name.

Many people deserve special thanks for their contributions to this thesis. First of all, my sincerest gratitude and deepest respect are expressed to my Supervisor and Head of Department of Chemistry, Prof. A. O. Ogunfowokan and Co-Supervisor, Dr. J. A. O. Oyekunle, for all their help, supervision, dedication, invaluable comments, encouragement and patience in reading the thesis and throughout the course of this study. I feel extremely fortunate to have had an opportunity to work with such dedicated individuals. I also acknowledge the opportunity given to me by Prof. O. S. Fatoki of Cape Peninsula University of Technology, South Africa, to use his laboratory as a visiting doctoral candidate. Prof. D. J. Oyedele provided me the auger used throughout the sampling periods. I really appreciate your kindness sir.

To the Head of Department Chemistry and Industrial Chemistry, Bowen University, Associate Prof. (Mrs) M. O. Dawodu, Prof. J. A. Faniran, Prof. E. O. Odebunmi and Prof. C. O. Fakunle, I wish to say a big thank you for the motherly and fatherly roles played during the course of this study. The contributions of Eng. Remi Oluokun, Dr O .E. Atobatele, Dr. E. O. Akindele, Dr. O. S. Ayanda, Dr. Dayo Adeyi, Dr. Joshua Obisanya, Dr. S. O. Olatunji and Mr. A. R. Alashe towards the success of this work are highly appreciated.

To all my teachers who have taught me since childhood, I say thank you for being a part of what I am today and what I will be in future. To my academic colleagues and the technologists in the Department of Chemistry and Industrial Chemistry, Bowen University, your moral support is highly appreciated.

To those who walked beside me and lent me their time on the course of this study, I say thank you. I am very grateful to the Chaplain, Bowen University Rev. Kunle Popoola, Mr. E. A. Akintunde, Mr Femi Oduola, Mr. Gbenga Oke, Mr. A. A. Olanrewaju, Mr Taiwo Ogunwale and Mr Lekan Akindolani my fellow adventurers who tirelessly gave me their time and assisted me in one way or the other in the course of this study.

To my senior and colleagues in the ministry such as Pastors E.O. Adeoje, Moradeyo, Akinwumi, Lucky, Ali, Noah Morakinyo, James Olanipekun, Rev. Ben Adesina and Rev. Dr. Bayo Ademuyiwa, I say thank you all for your spiritual support. I also appreciate my biological father, siblings (Tunde, Folasade and Mojisola) and friend, Debola Odu-Onikosi, for their moral, financial and spiritual supports. To my wife (Kemi) and beloved daughters (Hephzibah and Emerald), thank you for your unquantifiable endurance following my long absence from home.

Godwin Oladele OLUTONA

2015

TABLE OF CONTENTS

TITLI	E PAGE	
Title p	page	i
Certif	ication	ii
Dedic	ation	iii
Ackno	owledgment	iv
Table	of Contents	vi
List o	f Figures	X
List o	f Tables	xiii
Abbre	eviations and Symbols	XV
Abstra	act	xvii
CHAI	PTER ONE	
1.0	Introduction	1
1.1	Background to the Study	1
1.2	Scope of the Study	6
1.3	Justification for the Study	6
1.4	Aim and Objectives of the Study	7
1.5	Expected Contribution to Knowledge	7
CHAI	PTER TWO	
2.0	Literature Review	8
2.1	Environmental Pollution	8
2.2	Flame Retardants	9
2.3	Bromine	9
2.4	Brominated Flame Retardants	10
	2.4.1 Tetrabromobisphenol A (TBBPA)	11

OBAFEMI AWOLOWO UNIVERSITY

	2.4.2	Hexabromocyclododecane (HBCD)	12
	2.4.3	Polybrominated Biphenyls (PBBs)	12
	2.4.4	Polybrominated Diphenyl Ethers (PBDEs)	13
2.5	Chemi	stry and Characteristics of PBDEs	14
	2.5.1	Global Production and Usage of PBDEs	16
2.6	Source	es of Polybrominated Diphenyl Ethers in the Environment	25
2.7	Degrad	dation of Brominated Flame Retardants	26
	2.7.1	Chemical Degradation	27
	2.7.2	Photochemical Degradation	27
		2.7.2.1 Photochemical Degradation of PBDEs	27
	2.7.3	Thermal Degradation	28
	2.7.4	Biological Degradation	29
		2.7.4.1 Biological Degradation of PBDEs	30
2.8	Enviro	nmental Occurrence of PBDEs	32
	2.8.1	Abiotic Exposure	32
		2.8.1.1 PBDEs in Air/Dust	32
		2.8.1.2 Occurrence in Sediment	35
	2.8.2	Biota Exposure	36
		2.8.2.1 Human Exposure to PBDEs	37
		2.8.2.2 Dietary Exposure to PBDEs	38
		2.8.2.3 Levels of PBDEs in Fish and Shellfish	42
		2.8.2.4 Levels of PBDEs in Meat Products and Eggs	42
		2.8.2.5 Levels of PBDEs in Vegetables and Fruit	43
	2.8.3	Occupational Exposure	44
2.9	Toxico	ology of PBDEs	45
2.10	Metho	ds of Solid Waste Management	47

	2.10.1 Landfilling	47
	2.10.2 Recycling of Organic Waste	48
	2.10.3 Aerobic Composting	48
	2.10.4 Vermicomposting	49
	2.10.5 Anaerobic Digestion (Biomethanation)	49
2.11	Thermal Treatment Techniques of MSW	50
	2.11.1 Incineration	50
	2.11.2 Gasification Technology	50
2.12	Soil	51
	2.12.1 Heavy Metal	52
	2.12.2 Heavy Metals in Soil	52
	2.12.3 Heavy Metals in Bed Sediment	53
2.13	Potential Remediation Technologies for Potentially Toxic Metals and PBDEs	55
2.14	Previous Related Works on PBDEs in Africa	56
2.15	Previous Works on Heavy Metals in Dumpsite Soils and Aquatic Environment	64
2.16	Analytical Equipment	68
	2.16.1 Inductive Couple Plasma-Optical Emission Spectrometry (ICP-OES)	68
	2.16.1.1 ICP Operation and Characteristics	69
	2.16.2 Gas Chromatography (GC)	74
	2.16.2.1 Electron Capture Detector	76
	2.16.2.2 Detection by Mass Spectrometry	77
2.17	Health Risk Assessment	77
CHAP	THER THREE	
3.0	Materials and Methods	79
3.1	Determination of some Physicochemical Parameters in Water Samples	79
	3.1.1 pH Determination	79
	3.1.2 Electrical Conductivity (EC) and Temperature	79

OBAFEMI AWOLOWO UNIVERSITY

3.2	Sterilization of Apparatus Purification	79
3.3	Choice of Target Analytes for PBDE Analysis	79
3.4	Description of the Study Area	80
3.5	Sample Collection, Handling and Preservation	85
3.6	Extraction of Water Sample for PBDE Analysis	86
3.7	Extract Clean -up Procedure for Water Samples	86
3.8	Extraction of Soil and Sediment Samples for PBDE Analysis	87
3.9	Extract Clean-up Technique for Soil and Sediment	87
3.10	Digestion of Soil and Sediment for Metal Analysis	87
3.11	Instrumental Analysis of Potentially Toxic Metals	88
3.12	Instrumental Determination of Brominated Flame Retardants	89
	3.12.1 Optimization of GC Parameters	90
	3.12.1.1 Injector Temperature	89
	3.12.1.2 Instrumental Analyses	91
3.13	Quality Control and Quality Assurance	95
3.14	Linearity, Precision, Accuracy and Recoveries of Spiked Standards	95
	3.14.1 Recovery Analysis of PBDEs in Water Samples	96
	3.14.2 Recovery Analysis of PBDE in Soil and Sediment Samples	96
	3.14.3 Recovery of Surrogate Standards	97
3.15	Calculations	99
3.16	Contamination Assessments of Dumpsite Soil and Sediment	99
	3.16.1 Enrichment Factor (EF)	99
	3.16.2 Determination of Geo-accumulation Index	98
	3.16.3 Contamination Factor	101
	3.16.4 Pollution Load Index	101
3.17	Health Risk Assessment for Potentially Toxic Metals	103

3.18	Statist	ical Analysis	104
CHAPTER FOUR			
4.0	Result	s and Discussion	105
4.1	Selecte	ed Physicochemical Parameters of Asunle Stream	105
4.2	GC Ch	aromatograms	106
	4.2.1	Retention Time of the Targeted Compounds	111
	4.2.2	Method Detection Limit (MDL) and Instrument detection Limit for PBDE	111
4.3	Enviro	nmental Levels of Target Compounds Investigated	114
	4.3.1	PBDEs Occurrence in the Dumpsite Soil	114
	4.3.2	Principal Component Analysis of PBDEs in the Dumpsite Soils	117
	4.3.3	Seasonal Levels of PBDEs in the Dumpsite	117
	4.3.4	Total Mean Levels of PBDEs in the Dumpsite Soil	120
	4.3.5	Correlation Analysis of PBDEs in the Dumpsite	121
	4.3.6	Vertical Migration of PBDEs in the Dumpsite Soil	124
4.4	Latera	Migration of PBDEs away from the Dumpsite to the Receiving Stream	126
	4.4.1	Monthly Levels of PBDEs Lateral Migration of PBDEs away from the	
		Dumpsite to the Receiving Stream	126
	4.4.2	Vertico-Lateral Distribution of PBDEs from the Dumpsite to the	
		Receiving Stream	128
	4.4.3	Levels of PBDEs at Various Distances away from the Dumpsite	130
	4.4.4	Seasonal Levels Lateral Distribution of PBDEs in Dumpsite Soil towards	
		the Receiving Stream	130
	4.4.5	Correlation Analysis of Lateral Distribution of PBDEs in the Dumpsite	133
4.5	Levels	and Distribution of PBDEs in the Asunle Stream	133
	4.5.1	Monthly Levels and Distribution of PBDEs in Stream Water Samples	135
	4.5.2	Principal Component Analysis of PBDEs in Water Sample of	
		Asunle Stream	136

Stream	4.5.3 139	Levels of PBDEs in Water Samples at Various Locations of Asunle	
	4.5.4	Seasonal Levels of PBDEs in Water Samples of Asunle Stream	140
	4.5.5	Correlational Analysis of PBDEs in Water Samples of Asunle Stream	143
	4.5.6	Comparison of PBDEs Levels in Water Samples with Various Countries	
		Of the World	145
4.6	Levels	and Distribution of PBDE Congeners in Bed Sediment of Asunle Stream	148
	4.6.1	Monthly Levels of PBDEs in Bed Sediment	148
	4.6.2	Levels of PBDEs in Bed Sediment of Asunle Stream at Various Locations	150
	4.6.3	Seasonal variations of PBDE in Bed Sediment of Asunle stream	152
	4.6.4	Principal Component Analysis of PBDEs in Bed Sediment	
		of Asunle Stream	154
	4.6.5	Correlational Analysis of PBDEs in Bed Sediment of Asunle Stream	154
	4.6.6	Comparison of PBDE Levels in Sediment with Levels in other Countries	157
	4.6.7	Potential Source of Target Compounds	158
4.7	Potent	ially Toxic Metals Analysis using ICP-OES	160
	4.7.1	Validity of Analytical Method Adapted for Potentially Toxic	
		Metal Analysis	160
	4.7.2	Levels of Potentially Toxic Metals in the Soil Collected from	
		the Dumpsite	162
	4.7.3	Vertical Levels of Potentially Toxic Metals in the Dumpsite	171
	4.7.4	Seasonal Levels of Potentially Toxic Metals in the Dumpsite Soil	174
	4.7.5	Factor Analysis of Potentially Toxic Metals in the Dumpsite Soil	174
	4.7.6	Geoaccumulation Index of Potentially Toxic Metals in the Dumpsite Soil	177
	4.7.7	Enrichment Factor (EF) of Potentially Toxic Metals in the Dumpsite Soil	179
	4.7.8	Contamination Factor or Index of Metals in the Dumpsite	181
	4.7.9	Correlation Analysis of Metals in the Dumpsite Soil	183

4.8	Latera	l Distribution and Levels of Potentially Toxic Metals in Soil toward	
	the Re	ceiving Stream	185
	4.8.1	Seasonal Levels in Lateral Distribution of Potentially Toxic Metals	
		Towards the Receiving Stream	191
	4.8.2	PCA of Metals in Lateral Distribution of Metals towards the	
		Receiving Stream	191
	4.8.3	Geoaccumulation Index of Lateral Distribution of Potentially	
		Toxic Metals	194
	4.8.4	Enrichment Factor in Lateral Distribution of Potentially Toxic Metals	
		Toward the Receiving Stream	194
	4.8.5	Contamination Factor/Index of Lateral Distribution of Potentially	
		Toxic Metals towards the Receiving Stream	197
	4.8.6	Correlational Variation of Metals of the Lateral Sampling towards the	
		Receiving Stream	200
4.9	Potent	ially Toxic Metals in Bed Sediment of Asunle Stream	202
	4.9.1	Seasonal Levels of Potentially Toxic Metals in Bed Sediment of	
		Asunle Stream	206
	4.9.2	Principal Component Analysis of Potentially Toxic Metals in Bed	
		Sediment of Asunle Stream	206
	4.9.3	Geoaccumulation Index of Potentially Toxic Metals to Bed Sediment	
		Of Asunle Stream	209
	101	Enrichment Factor/Index of Detentially Toxic Motels to Ded Sediment	
	4.7.4	Of A suple Streem	200
	105	Contamination Factor with Respect to Temporal Variation of Potentially	209
	т .Э.Ј	Toxic Metals in Bed Sediments of Asunla Stream	212
	106	Spatial Variation of Dotentially Toxic Matals in Dad Sadiment of	<i>L</i> 1 <i>L</i>
	4.7.0	Spanar variation of rotentiary roxic metals in Deu Seuthent of	

Asunle Stream	214	
4.9.7 Contamination Factor of Potentially Toxic Metals with Respect to		
their Spatial Variation in Sediment of Asunle Stream	219	
4.9.8 Pollution Load Index of the Bed Sediments	219	
4.9.9 Correlation Analysis of Potentially Toxic Metals in Bed Sediment of		
Asunle Stream	222	
4.10 Health Risk Assessment of Potentially Toxic Metals in the Dumpsite Soil	224	
4.11 Health Risk Assessment of Potentially Toxic Metals in Bed Sediment of		
Asunle Stream	237	
CHAPTER FIVE		
5.0 Conclusion and Recommendations	248	
5.1 Conclusion	248	
5.2 Recommendations	249	
REFERENCES	252	
APPENDIX I Calibration Curves of PBDE standards 29		
APPENDIX II Photograph Showing the Obafemi Awolowo University Dumpsite 302		

APPENDIX II Photograph Showing the Obafem	ni Awolowo University Dumpsite	302
LIST OF F	IGURES	
Figure Title		Page
Fig 1.1: Chemical Structure of Brominated Flam	ne Retardants	3
Fig. 2.1: Structure of Eight most Abundant PBD	DE Congeners	19
Fig. 2.2: Consumption, Distribution of Bromine	in the Final Products	21
Fig 2.3: Debromination of Deca and Octa-BDE	mixture by Anaerobic Bacteria	
Sulfurospirillum multivorans and Dehalo	ococcoides species adapted from	
He et al., 2006		31
Fig. 2.4 : PBDEs Debromination Pathway by Di	ifferent Cultures	33

Fig. 2.5: Overview of Sources and Pathways of PBDEs	39
Fig. 2.6: Schematic Diagram of an ICP Torch (Source: Hou and Jones, 2000)	71
Fig. 2.7: Schematic Diagram of Three Types of Pneumatic Nebulizers	
(Source: Hou and Jones, 2000)	73
Fig. 3.1: Geological Map of Obafemi Awolowo University	82
Fig. 3.2: Map Showing the Sampling Locations	84
Fig. 3.3a &b: Specification and the Operating Condition of the GC-MS	
Employed 94	93-
Fig. 4.1a&b: Chromatograms of PBDEs Congeners Mixed Standards	
(10&20 ng/ml) 108	
Fig. 4.2 : Chromatograms Showing Elution of Target PBDE Congeners Standards	109
Fig. 4.3: PCA Component Plot for the Monthly Variation of BDE Collected from the	
Dumpsite	118
Fig. 4.4: Seasonal Variation of PBDEs in Dumpsite	119
Fig. 4.5: Annual Mean Concentrations of PBDEs in the Dumpsite	122
Fig. 4.6: Levels of PBDEs at Various Distances from the Dumpsite towards the	
Receiving Stream	131
Fig. 4.7: Seasonal Variation of the Lateral Distribution of PBDEs in the Dumpsite	
Soil	132
Fig. 4.8: PCA Analysis of PBDE Congeners in Water Samples of Asunle Stream	138
Fig. 4.9: Seasonal Variation in Levels of PBDE Congeners in Water Samples of	
Asunle Stream	142
Fig. 4.10: Seasonal Variation of PBDE Congeners in Bed Sediment of	
Asunle Stream	153
Fig. 4.11: PCA Analysis of PBDEs in Bed Sediment of Asunle Stream	155
Fig. 4.12 a&b: Seasonal Levels of Potentially Toxic Metals in the Dumpsite	175

Fig. 4.13: PCA of Potentially Toxic Metals in the Dumpsite Soil	176
Fig. 4.14: Principal Component Analysis of Lateral Distribution of Potentially Toxic	
Metals towards the Receiving Stream	193
Fig. 4.15: Seasonal Levels of Potentially Toxic Metals in Bed Sediment of Asunle	
Stream	207
Fig. 4.16: PCA of Potentially Toxic Metals in Bed Sediment of Asunle Stream	208

LIST OF TABLES

	Page
Table 1.1: BFR volume Estimates in 2001 and 2003 in Metric Tonnes	6
Table 2.1 Physicochemical Properties of some PBDEs and PBBS	
Technical Formulations	15
Table 2.2: The Percentage Composition of PolyBrominated Diphenyl Ether	r
(PBDE) Congeners in Technical Formulation (WHO, 1994)	20
Table 2.3: A Comparism of Annual Global Bromine Production in Tonnes	23
Table 2.4 Global Annual Production of Polymers in 2000 and their BFR	
Content	24
Table 2.5 Upper Bound Estimate of PBDEs Daily Intake for General	
Canadian Population	40
Table 2.6 PBDE Levels in Human Samples (ng/g lipid) from Different	

Countries (Range in Parenthesis)	41
Table 3.1 Chemical Information of the Target Compounds (PBDEs Investigated)	82
Table 3.2 GC Operating Parameters Optimized for PBDE Analysis	90
Table 3.3 Percent Recoveries of Target Compounds for Different Matrices	98
Table 3.4 Classes of the Geoacculation Index	102
Table 4.1: Annual (mean±Sd) Values of Selected Physicochemical Parameters of	
Water Samples from Asunle Stream	107
Table 4.2: Target ions of Investigated PBDE Congeners Monitored with the GC-MS	112
Table 4.3: Method Detection Limit Values for Different Matrices Investigated	113
Table 4.4: Monthly Variation of Polybrominated Diphenyl Ethers in the Dumpsite Soil	116
Table 4.5: Correlation Analysis of PBDE of the Dumpsite	123
Table 4.6: Vertical Distribution of PBDE in the Dumpsite Soil	125
Table 4.7: Monthly Lateral Distribution of PBDEs in Soil Samples towards the	
Receiving Stream	127
Table 4.8: Variation by Depth of the Lateral Migration of PBDEs in Soil Samples	129
Table 4.9: Correlational Analysis of the Longitudinal Distribution of PBDEs in the	
Dumpsite	134
Table 4.10: Mean Concentrations of PBDEs in Water Sample Collected from Asunle	
Stream	137
Table 4.11: Mean Levels of PBDEs in Water Sample Collected from Asunle Stream	
at Different Locations	141
Table 4.12: Correlational Analysis of PBDEs in Water Samples of Asunle Stream	144
Table 4.13: Comparison of PBDE Levels in Water Samples with other Studies around	
the World	147
Table 4.14: Monthly Variation of PBDE in Bed Sediment of Asunle Stream	149
Table 4.15: Locational Variation in PBDEs in Bed Sediment of Asunle Stream	151
Table 4.16: Correlation Analysis of PBDE in Bed Sediment of Asunle Stream	156

Table 4.17: Comparison of PBDE Concentrations in the Sediment with other	
Studies across the World	159
Table 4.18: Validity of Analytical Procedure Employed in this Study	161
Table 4.19a&b: Monthly Levels of Potentially Toxic Metals in the	
Dumpsite soil	169-170
Table 4.20a&b: Depth Variation of Potentially Toxic Metals in the	
Dumpsite Soil	172-173
Table 4.21: Geoaccumulation Index of Potentially Toxic Metals in the Dumpsite	178
Table 4.22: Enrichment Factor of Potentially Toxic Metals in the Dumpsite Soil	180
Table 4.23: Contamination Factor/Index of Metals in the Dumpsite Soil	182
Table 4.24: Correlation Analysis of Potentially Toxic Metals in the Dumpsite	184
Table 4.25a&b: Monthly Variation of Potentially Toxic Metals in Longitudinal	
Sampling towards the Stream	189-190
Table 4.26: Seasonal Levels in Lateral Distribution of Potentially Toxic Metals	192
Table 4.27: Geo-accumulation Index of Lateral Distribution of Metals in the	
Dumpsite Soil	195
Table 4.28: Enrichment Factor of Lateral distribution of Potentially Toxic Metals	
towards Receiving Stream	196
Table 4.29a&b: Contamination Factor of Lateral Distribution of Potentially Toxic	
Metals towards the Receiving Stream	198-199
Table 4.30: Correlational Variation of Potentially Toxic Metals of the Longitudina	ıl
Sampling	201
Table 4.31: Monthly Levels of Potentially Toxic Metals in Bed Sediment of Asun	le
Stream	205
Table 4.32: Geoaccumulation Index of Metals in the Dumpsite Soils	210
Table 4.33: Enrichment Factor of Potentially Toxic Metals in Bed Sediment of	

Asunle Stream	211
Table 4.34: Contaminant Factor of Potentially Toxic Metals in Bed Sediment of	
Asunle Stream	213
Table 4.35: Spatial Variation of Potentially Toxic Metals in Bed Sediment of Asunle	
Stream	218
Table 4.36: Contaminant Factor of Potentially Toxic Metals in Spatial Variation in	
Sediment of Asunle Stream	220
Table 4.37: Pollution Load Index of Potentially Toxic Metals across the Sampling	
Locations.	221
Table 4.38: Correlation Analysis of Metals in Bed sediment of Asunle Stream	223
Table 4.39: Chronic Daily Intake of Carcinogenic Risk (ingestion) for the Dumpsite	
Soil	230
Table 4.40: Cancer Risk for the Potentially Toxic Metals in the Dumpsite Soil	232
Table 4.41a&b: Chronic daily Intake (oral) for Non-Carcinogenic Risk for Children in	
the Dumpsite Soil	234
Table 4.42: Total Chronic Hazard Quotient Index $(x10^6)$ of the Potentially Toxic	
Metals in the Dumpsite	236
Table 4.43: Chronic Daily Intake for Carcinogenic (oral) in Bed Sediment of Asunle	
Stream	241
Table 4.44: Cancer Risk Assessment of Potentially Toxic Metals in Bed Sediment of	
Asunle Stream	243
Table 4.45a&b: CDI for Non-Carcinogenic (oral) in Bed Sediment of	
Asunle Stream	245
Table 4.46: Total Chronic Hazard Quotient (x106) of the Potentially Toxic Metals in	
the Bed Sediment of Asunle Stream	247

ABBREVATIONS AND ACRONYMS

ACC	American Chemistry Council
ANOVA	Analysis of Variance
ATSDR	Agency for Toxic Substances and Disease Registry
BFR	Brominated Flame Retardant
BSEF	Bromine Science and Environment Forum
CDI	Chronic Daily Intake
CF	Contaminant Factor
DCM	Dichloromethane
EFSA	European Food and Safety Authority
GC	Gas Chromatography
EI^+	Electron impact ionization
IARC	International Agency for Research in Cancer
ICP-OES	Inductive Couple Plasma-Optical Emission Spectrometry
IPCS	International Programme on Chemical Safety
MRL	Minimal Risk Level
M/Z	Mass to Charge Ratio
OCP	Organochlorine Pesticides Residue
PBDEs	Polybrominated Diphenyl Ethers
PCA	Principal Component Analysis
RAIS	Risk Assessment Information System
USEPA	United States Environmental Protection Agency
WHO	World Health Organization

ABSTRACT

ABSTRACT

This study investigated the occurrence and levels of polybrominated flame retardants and potentially toxic metals in soils, sediment and water of the Obafemi Awolowo University Dumpsite and its receiving stream. It also monitored the temporal, spatial and seasonal distribution of the analytes in the matrices and evaluated the health risk of the potentially toxic metals in soils and sediments of the study area. These were done with a view to evaluating the pollution status of the studied area with respect to polybrominated fire retardants and potentially toxic metals.

Sampling was done on seasonal basis comprising of May- August and November-February, respectively, for wet and dry seasons. Soil samples of the dumpsite and land space towards the stream were collected using an auger at 0-15 cm and 15-30 cm depths and 50 m away from each other. Water and sediment samples were collected from the receiving stream at six different points that included the upstream and downstream points. Extraction of polybrominated diphenyl ethers (PBDEs) from water, sediment and soil samples were done using liquid-liquid extraction and soxhlet extraction methods with dichloromethane as the extraction solvent. Clean-up of the extracted samples was done using multi-layer silica gel chromatography. The potentially toxic metals were analysed using Inductive Couple Plasma Optical Emission Spectrometry while Gas Chromatography Mass Spectrometry was employed for the quantification of the PBDEs.

The total mean values of PBDEs in the dumpsite soil ranged from 0.36 ± 0.34 ng/g BDE - 47 to 13.84 ± 28.18 ng/g BDE- 153. Total PBDEs indicated that concentrations in 0-15 cm layer were higher than those in the 15-30 cm layer. The concentration of Σ_6 PBDEs in the stream

water ranged from 0.03 – 0.31 ng/ml while the values in the sediments ranged from 0.83 – 10.43 ng/g with BDE-153 occurring as the dominant congener in all the matrices analyzed. Seasonal variability of PBDEs in the matrices indicated that higher levels were found during the wet season in the dumpsite and the receiving stream. The mean values of potentially toxic metals in the dumpsite soil ranged between 3.12 mg/kg Ni and 15500 mg/kg Al. Geo-accumulation study indicated that the soil of the dumpsite and stream sediment were practically unpolluted with, Fe, Cr, Al and Si; strongly polluted with Zr; while the soil and sediment samples were polluted with respect to Se, As, Th, U and Y. Mean levels of the potentially toxic metals in the sediment of Asunle stream ranged from 0.10 Sr to 7260 Fe. The health risk assessment of most of the potentially toxic metals in the dumpsite soil and sediments of Asunle stream revealed that their chronic daily intake for both carcinogenic and non-carcinogenic effects gave hazard quotient for exposure that exceeded the acceptable USEPA value of 1.0.

This study revealed that the environmental matrices of the area under investigation contained higher levels of PBDEs and potentially toxic metals than recommended by WHO and USEPA.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Advances in polymer science over the past 50 years have led to the introduction of a large number of polymers with different properties and applications. As a result, we are surrounded by a wide variety of polymers that have found applications in clothing, furniture, electronics, vehicles and computers. In fact modern cars contain in excess of 100 kg of various polymers. Most of these polymers are petroleum-based, and hence, are flammable.

Fire is a major cause of property damage, loss and even death throughout the history of mankind (Daso *et al.*, 2013a). To circumvent these phenomenal losses as a result of fire accidents, a group of chemicals known as "flame retardants" have been incorporated into various polymer products to reduce the likelihood of ignition and burning in a wide range of textiles, plastics, building materials and electronic equipment used in commerce and residential homes (Alaee and Wenning, 2002). Brominated flame retardants (BFRs) are chemicals that are added to many consumer products including plastics, electronics, textiles, cushioning foams for furniture, automobile interiors and other materials to prevent fire (WHO/IPCS, 1994, 1997).

The idea of flame retardant materials dates back to about 450 BC, when the Egyptians used alum to reduce the flammability of wood. The Romans (about 200 BC) used a mixture of alum and vinegar to reduce the combustibility of wood (Hindersinn, 1990). Certain ammonium salts were also found to be effective for the protection of precious textiles in the early nineteenth century, a practice that continues today (Daso *et al.*, 2013a).

In the development of traditional building materials like wood and metal with plastics, the previously used inorganic salts could not be applied because they considerably reduce

thermal stability (Vonderheide et al., 2008). The development of halogen-based organic flame retardants was a major advancement as they could be incorporated into plastic substance (Daso et al., 2011a). With the increasing usage of polymeric materials in construction, electronic and computer equipment, global market demand for the use BFRs continues to grow substantially. This scientific advancement has resulted in the production and use of several flame retardants broadly classified into three major groups, namely: brominated flame retardants (BFRs), phosphorous-based flame retardants and inorganic flame retardants (usually magnesium and aluminium hydroxides) (Minnesota Pollution Control Agency, 2008). Flame retardants could further be sub-divided into five major classes: brominated bisphenols, diphenyl ethers, cyclododecanes, phenols and phthalic acid derivatives (European Food Safety Authority, (EFSA, 2011). Among these three groups of chemicals, the halogenated organics and organophosphorous flame retardants are of great concern to the public due to their environmental persistence and toxicity (Daso et al., 2011a).

The halogenated organic flame retardants are generally classified as either chlorinated or brominated flame retardants. The brominated flame retardants (Fig 1.1) are extensively used due to their thermal stability, high bromine content and relatively low cost (Darnerud *et al.*, 2001). The most used brominated flame retardants are polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA) and polybrominated biphenyls (PBBs) (Odusanya *et al.*, 2009). Depending on their mode of incorporation into the polymeric materials, two groups of BFRs exist, namely: reactive and additive BFRs. Reactive BFRs are those that are covalently bonded to the polymers, e.g, tetrabromobisphenol A and its derivatives. Additive BFRs, which include polybrominated biphenyls (PBBs), poly brominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), are not covalently bonded to the

the polymeric materials. However, they are more likely to diffuse out of the treated polymer during their lifetime (de Wit, 2002).

Fig. 1.1: Chemical Structure of Brominated Diphenyl Ethers used in Flame Retardants