

# TAXONOMIC EVALUATION OF SOME SPECIES IN THE FAMILY CUCURBITACEAE

# TITILAYO COMFORT OMOTAYO

B.Sc. (Ife)

# A THESIS SUBMITTED TO THE DEPARTMENT OF BOTANY, FACULTY OF SCIENCE, OBAFEMI AWOLOWO UNIVERSITY, ILE – IFE IN PARTIAL FULFILMENT OF THE REQUIRMENT FOR THE AWARD OF THE DEGREE OF MASTERS OF SCIENCE (M.Sc.) IN BOTANY

2015

# **OBAFEMI AWOLOWO UNIVERSITY**

# HEZEKIAH OLUWASANMI LIBRARY

POST GRADUATE THESIS



# AUTHORIZATION TO COPY

Author: OMOTAYO, Titilayo Comfort

Title: Taxonomic Evaluation of some Species in the Family Cucurbitaceae

Degree: M.Sc.

Year: 2015

I, Omotayo T.C. hereby authorize the Hezekiah Oluwasanmi Library to copy my thesis, in whole or in part, in response to request from individual researcher or organizations for the purpose of private study or research.

..... Signature Date



# CERTIFICATION

This is to certify that this research study was carried out by OMOTAYO TITILAYO COMFORT as part of the requirement for the award of Master of Science degree in Botany of the Obafemi Awolowo University, Ile – Ife.

| Prof. Olubukola Adedeji |                   |      |
|-------------------------|-------------------|------|
| Supervisor              | Signature         | Date |
| Dr. A.E Folorunso       | $O_{\mathcal{I}}$ |      |
| Head of Department      | Signature         | Date |
| OBHL                    |                   |      |



# DEDICATION

This marvelous work is dedicated to God almighty the giver of LIFE.



### **ACKNOWLEDGEMENTS**

My profound appreciation goes to the COVENANT keeping God, the I AM that I AM, God almighty for his provision, strength, favor, sustenance and the grace to still be A LIVING SOUL. Through it all, I have come to realize that God is God and there is none like HIM. He is the author and finisher of everything on Earth and in Heaven.

I sincerely appreciate my supervisor Prof. (Mrs) O. Adedeji who happen to be a MOTHER and God sent HELPER to me for her immeasurable support in ALL aspects, thorough supervision and monitoring, constant drive and push at every stage of my research work, only God can reward you for your labor of love towards me. I am really grateful to you ma, words cannot be enough to appreciate you. Titilayo is saying a "BIG THANK YOU MUMMY"

My appreciation also goes to my loving husband AJALA EMMANUEL, thanks for being the man behind the screen, your effort, financial support and encouragement cannot be overemphasized, and may God help us and see us through even as we fulfill purpose and destiny together in life. YOU ARE MY PRECIOUS ONE.

My profound gratitude also goes to my sweet mother, Mrs Omotayo and Dr. Omotayo Raymond for their moral, financial, and spiritual support during the course of this Programme. Thanks for always being there for me and am so proud of you, you will live to eat the fruit of your labor. I appreciate every member of my wonderful family, THE OMOTAYO'S – Mrs Olarenwaju, Omotayo Toyin, Mrs Adekunle, Omotayo Sunday and Omotayo Funke – "auta" may God continue to unite us together with His cord of love.

I sincerely appreciate my twin sister from another parent, Ogundare Folasade Christianah you are a friend with positive landmarks in my life, your ROLES in my life can never be forgotten. You are wonderful to me and I love you so much.

I appreciate Mr Akinloye and Mr Biodun of the Department of Botany, am so grateful for the leading you gave me. My profound gratitude also goes to Mr. Gabriel Ibhanessebor, the former Curator of the



Department of Botany, Obafemi Awolowo University, Ile -Ife for his availability and support in identifying my plants.

My appreciation also goes to all the members of staff, Department of Botany, Obafemi Awolowo University, Ile- Ife for their contributions to the successful completion of this work. The Head of Department, Dr E.A Folorunsho, Prof. E.A. Odu, Prof. A.O. Isichei, Prof. J.I Muoghalu, Prof. J.O. Faluyi, Prof. A. A. Adelusi, Prof. H. C. Illoh, Dr. A.M. Makinde, Dr. F.A.Oloyede and Dr. Matthew Oziegbe, Mrs Eje, Mrs Arogundade Bunmi, Dr. O. T. Oladipo, Dr. S.A. Saheed, Dr. Tony Odiwe, Dr. A.M. Sakpere, Mr. B.E. Ayisire, Mr. and Mrs Ogbimi, Mrs S.O Azeez, Mrs. Bolaji, Mr. D.J. Akinyemi and all other academic and non- academic staff of the Department, may God continue to increase you.

I will like to say a very big thank you to all my friends and colleagues, Adeleye Oladipupo, Akinsulire Opeyemi, you guys are wonderful anatomists. Komolafe Ige, Borishade Tolulope, Idowu Johnson, Komolafe Emmanuel, Akinola Bukola, Showumi Temitope, Rufai Babatunde, Mrs Ashamu, Abibat, Olukoya Busayo, Oseni Michael, Abudlwakeel and others who contributed to this work. Finally, my appreciation goes to my Pastor and Prof. (Mrs) O. Adedeji of Dynamic Christian Assembly for the wonderful roles they played from the beginning of my programme till date. You have been a wonderful source of encouragement; God will continue to strengthen you, your Family and your ministry. THANK YOU DADDY.



# TABLE OF CONTENTS

| Content                                                 | <b>'</b> age |
|---------------------------------------------------------|--------------|
| Title Page                                              | i            |
| Authorization                                           | ii           |
| Certification                                           | iii          |
| Dedication                                              | iv           |
|                                                         |              |
| Acknowledgements                                        | v            |
| Table of Contents                                       | vii          |
| List of Tables                                          | xiii         |
| List of Figures                                         | xv           |
| List of Plates                                          | xvi          |
| Abstract                                                | xx           |
| CHAPTER ONE: INTRODUCTION                               | 1            |
| 1.1 Family Cucurbitacae                                 | 1            |
| 1.2 Subfamilies of the Family Cucurbitaceae             | 1            |
| 1.3 Features of the Species in the Family Cucurbitaceae | 2            |
| 1.4 Economic importance of the Family Cucurbitaceae     | 2            |
| 1.5 Justification                                       | 5            |
| 1.6 The Specific Objectives of the Sudy                 | 5            |



| 1.7  | Contribution to Knowledge                                   | 5  |  |
|------|-------------------------------------------------------------|----|--|
| СНАР | TER TWO: LITERATURE REVIEW                                  | 6  |  |
| 2.1  | Habit of the Species in the Family Cucurbitaceae            | 6  |  |
| 2.2  | Structural form of the Species in the Family Curcurbitaceae | 6  |  |
| 2.3  | Anatomy of the Family Cucurbitaceae                         | 7  |  |
| 2.4  | Morphology of the Family Cucurbitaceae                      | 8  |  |
| 2.5  | Palynology of the Family Cucurbitaceae                      | 9  |  |
| 2.6  | Morphological Markers in Telfairia occidentalis             | 10 |  |
| 2.7  | The Genus Cucurbita                                         | 12 |  |
| 2.8  | The Genus Cucumis                                           | 13 |  |
| 2.9  | The Genus Citrullus                                         | 14 |  |
| 2.10 | The Genus Lagenaria                                         | 14 |  |
| 2.11 | The Genus Luffa                                             | 15 |  |
| 2.12 | The Genus Trichosanthes                                     | 16 |  |
| 2.13 | The Genus Momordica                                         | 17 |  |
| 2.14 | The Genus Cucumeropsis                                      | 17 |  |
| 2.15 | The Genus <i>Telfairia</i>                                  | 18 |  |
| CHAP | CHAPTER THREE: MATERIALS AND METHODS                        |    |  |
| 3.1  | Herbarium Survey                                            | 20 |  |
| 3.2  | Seed Collection and Planting                                | 20 |  |



| 3.3  | Morphological   | Study                                                        | 21 |
|------|-----------------|--------------------------------------------------------------|----|
| 3.4  | Venation Study  |                                                              | 24 |
| 3.5  | Foliar Epiderma | al Study                                                     | 24 |
| 3.6  | Microscopy      |                                                              | 25 |
| 3.7  | Palynological S | tudy                                                         | 25 |
|      | 3.71 Acetoly    | vsis of Pollen Grains                                        | 25 |
| 3.8  | Data Analysis   |                                                              | 26 |
| СНАР | TER FOUR: RI    | ESULTS                                                       | 27 |
| 4.1  | Morphological   | Descriptions                                                 | 27 |
|      | 4.1.1           | Citrullus lanatus (Thunb.) Matsum.and Nakai. (Black seeds)   | 27 |
|      | 4.1.2           | Citrullus lanatus (Thunb.) Matsum.and Nakai. (Brown seeds)   | 29 |
|      | 4.1.3           | Cucumis melo Linn. (Seeds with Brown edges)                  | 31 |
|      | 4.1.4           | Cucumis melo Linn. (Seeds with Black edges).                 | 33 |
|      | 4.1.5           | Luffa cylindrica M. (Roem)                                   | 35 |
|      | 4.1.6           | Lagenaria siceraria (Molina) Standl. (Spatulate Fruit Shape) | 37 |
|      | 4.1.7           | Lagenaria siceraria (Molina) Standl. (Oval Fruit Shape)      | 39 |
|      | 4.1.8           | Cucumeropsis edulis (Hooker.f) cogn.                         | 41 |
|      | 4.1.9           | Cucumis sativus Linn.                                        | 43 |
|      | 4.1.10          | Momordica charantia Linn.                                    | 45 |
|      | 4.1.11          | Telfairia occidentalis (Hook.f)                              | 47 |
|      | 4.1.12          | Cucurbita maxima Duch.ex Lam.                                | 49 |
|      | 4.1.13          | Trichosanthes anguina Linn.                                  | 51 |
| 4.2  | Foliar Epiderma | al Study Observation                                         | 58 |
|      | 4.2.1           | Adaxial Epidermis of Citrullus lanatus (Brown Seeds)         | 58 |
|      | 4.2.1           | Abaxial Epidermis of Citrullus lanatus (Brown Seeds)         | 58 |



| 4.2.3  | Venation Pattern of Citrullus lanatus (Brown Seeds)              | 58 |
|--------|------------------------------------------------------------------|----|
| 4.2.4  | Adaxial Epidermis of Citrullus lanatus (Black Seeds)             | 62 |
| 4.2.5  | Abaxial Epidermis of Citrullus lanatus (Black Seeds)             | 62 |
| 4.2.6  | Venation Pattern of Citrullus lanatus (Black Seeds)              | 62 |
| 4.2.7  | Adaxial Epidermis of Cucumis sativus                             | 66 |
| 4.2.8  | Abaxial Epidermis of Cucumis sativus                             | 66 |
| 4.2.9  | Venation Pattern of Cucumis sativus                              | 66 |
| 4.2.10 | Adaxial Epidermis of Cucumeropsis edulis                         | 70 |
| 4.2.11 | Abaxial Epidermis of Cucumeropsis edulis                         | 70 |
| 4.2.12 | Venation Pattern of Cucumeropsis edulis                          | 70 |
| 4.2.13 | Adaxial Epidermis of Cucumis melo (Seeds with Black Edges)       | 74 |
| 4.2.14 | Abaxial Epidermis of Cucumis melo (Seeds with Black Edges)       | 74 |
| 4.2.15 | Venation Pattern of Cucumis melo (Seeds with Black Edges)        | 74 |
| 4.2.16 | Adaxial Epidermis of Cucumis melo (Seeds with Brown Edges)       | 78 |
| 4.2.17 | Adaxial Epidermis of Cucumis melo (Seeds with Brown Edges)       | 78 |
| 4.2.18 | Venation Pattern of Cucumis melo (Seeds with Brown Edges)        | 78 |
| 4.2.19 | Adaxial Epidermis of Cucurbita maxima                            | 82 |
| 4.2.20 | Abaxial Epidermis of Cucurbita maxima                            | 82 |
| 4.2.21 | Venation Pattern of Cucurbita maxima                             | 82 |
| 4.2.22 | Adaxial Epidermis of Lagenaria siceraria (Spatulate Fruit Shape) | 86 |
| 4.2.23 | Abaxial Epidermis of Lagenaria siceraria (Spatulate Fruit Shape) | 86 |
| 4.2.24 | Venation Pattern of Lagenaria siceraria (Spatulate Fruit Shape)  | 86 |
| 4.2.25 | Adaxial Epidermis of Lagenaria siceraria (Oval Fruit Shape)      | 90 |
| 4.2.26 | Abaxial Epidermis of Lagenaria siceraria (Oval Fruit Shape)      | 90 |
| 4.2.27 | Venation Pattern of Lagenaria siceraria (Oval Fruit Shape)       | 90 |
| 4.2.28 | Adaxial Epidermis of Luffa cylindrica                            | 94 |
| 4.2.29 | Abaxial Epidermis of Luffa cylindrica                            | 94 |
| 4.2.30 | Venation Pattern of Luffa cylindrica                             | 94 |



|     | 4.2.31      | Adaxial Epidermis of Momordica charantia                 | 98  |
|-----|-------------|----------------------------------------------------------|-----|
|     | 4.2.32      | Adaxial Epidermis of Momordica charantia                 | 98  |
|     | 4.2.33      | Venation Pattern of Momordica charantia                  | 98  |
|     | 4.2.34      | Adaxial Epidermis of Telfairia occidentalis (Female)     | 101 |
|     | 4.2.35      | Abaxial Epidermis of Telfairia occidentalis (Female)     | 101 |
|     | 4.2.36      | Venation Pattern of Telfairia occidentalis (Female)      | 101 |
|     | 4.2.37      | Adaxial Epidermis of Telfairia occidentalis (Male)       | 105 |
|     | 4.2.38      | Abaxial Epidermis of Telfairia occidentalis (Male)       | 105 |
|     | 4.2.39      | Venation Pattern of <i>Telfairia occidentalis</i> (Male) | 105 |
|     | 4.2.40      | Adaxial Epidermis of Trichosanthes anguina               | 109 |
|     | 4.2.41      | Abaxial Epidermis of Trichosanthes anguina               | 109 |
|     | 4.2.42      | Venation Pattern of Trichosanthes anguina                | 109 |
| 4.3 | Palynolog   | ical Result                                              | 117 |
|     | 4.3.1       | Lagenaria siceraria (Oval Fruit Shape)                   | 117 |
|     | 4.3.2       | Lagenaria siceraria (Spatulate Fruit Shape)              | 119 |
|     | 4.3.3       | Luffa cylindrica                                         | 121 |
|     | 4.3.4       | Telfairia occidentalis (Male)                            | 123 |
|     | 4.3.5       | Cucumis melo (Seeds with Black Edges)                    | 125 |
|     | 4.3.6       | Cucumis melo (Seeds with Brown Edges)                    | 127 |
|     | 4.3.7       | Citrullus lanatus (Black Seeds)                          | 129 |
|     | 4.3.8       | Citrullus lanatus (Brown Seeds)                          | 131 |
|     | 4.3.9       | Cucurbita maxima                                         | 133 |
|     | 4.3.10      | Trichosanthes anguina                                    | 135 |
|     | 4.3.11      | Cucumis sativus                                          | 137 |
|     | 4.3.12      | Cucumeropsis edulis                                      | 139 |
|     | 4.3.13      | Momordica charantia                                      | 141 |
| CHA | APTER FIVE  | 2: DISCUSSION AND CONCLUSION                             | 146 |
| 5.1 | Morphologic | al Study                                                 | 146 |



| REI | FRENCES                | 159 |
|-----|------------------------|-----|
| 5.4 | Key to Identification  | 158 |
| 5.3 | Palynological Study    | 155 |
| 5.2 | Foliar Epidermal Study | 150 |

Table

|               | LIST OF TABLES                                                             |    |
|---------------|----------------------------------------------------------------------------|----|
| Table<br>Page |                                                                            |    |
| 1             | Location of Sites of their Collection                                      | 22 |
| 2             | Summary of Qualitative Morphological Characters of the Species of          |    |
|               | the Family Cucurbitaceae Studied.                                          | 53 |
| 3             | Minimum and Maximum Values of Quantitative Morphological Characters        |    |
|               | of the Species of the Family Cucurbitaceae Studied.                        | 54 |
| 4             | Mean Values and Standard Error of Quantitative Morphological               |    |
|               | Characters of the Species of the Family Cucurbitaceae Studied.             | 55 |
| 5             | Summary of Quantitative Morphological Characters of Some Species           |    |
|               | Studied in the Family Cucurbitaceae with Duncan Multiple Range Test Values | 56 |
| 6             | Simple Descriptive Statistical Analysis of Epidermal Characters of         |    |
|               | Citrullus lanatus (Brown Seeds)                                            | 61 |
| 7             | Simple Descriptive Statistical Analysis of Epidermal Characters of         |    |
|               | Citrullus lanatus (Black Seeds)                                            | 65 |
| 8             | Simple Descriptive Statistical Analysis of Epidermal                       |    |
|               | Characters of Cucumis sativus                                              | 69 |
| 9             | Simple Descriptive Statistical Analysis of Epidermal                       |    |



|    | Characters of Cucumeropsis edulis                                    | 73  |
|----|----------------------------------------------------------------------|-----|
| 10 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Cucumis melo (Black Seeds)                                           | 77  |
| 11 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Cucumis melo (Brown Seeds)                                           | 81  |
| 12 | Simple DescriptiveStatistical Analysis of Epidermal                  |     |
|    | Characters of <i>Cucurbita maxima</i>                                | 85  |
| 13 | Simple Descriptive Statistical Analysis of Epidermal Characters of   | *   |
|    | Lagenaria siceraria (Spatulate Fruit Shape)                          | 89  |
| 14 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Lagenaria siceraria (Oval Fruit Shape)                               | 93  |
| 15 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Luffa cylindrica                                                     | 97  |
| 16 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Momordica charantia                                                  | 100 |
| 17 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Telfairia occidentalis (Female).                                     | 104 |
| 18 | Simple Descriptive Statistical Analysis of Epidermal Characters of   |     |
|    | Telfairia occidentalis (Male).                                       | 108 |
| 19 | Simple Descriptive Statistical Analysis of Epidermal Characters      |     |
|    | of Trichosanthes anguina                                             | 111 |
| 20 | Summary of Qualitative Foliar Epidermal Characters (Adaxial surface) |     |
|    | of the Species of the Family Cucurbitaceae Studied                   | 112 |
| 21 | Summary of Qualitative Foliar Epidermal Characters (Abaxial surface) |     |
|    | of the species of the Family Cucurbitaceae Studied                   | 113 |
| 22 | Species grouping from Duncan's Multiple Range Test Based on          |     |
|    | Leaf Epidermal Characters on the Adaxial Surface                     | 114 |
| 23 | Species grouping from Duncan's Multiple Range Test based on          |     |



|        | Leaf Epidermal Characters on the Abaxial Surface                            | 115 |
|--------|-----------------------------------------------------------------------------|-----|
| 24     | The Description of Pollen Grains Based on their Shapes, Aperture and Sizes. | 143 |
| 25     | Mean and Standard Deviation Value of the Quantitative Palynological         |     |
|        | Characters of the Species in the Family Cucurbitaceae Studied.              | 144 |
| 26     | Summary of Quantitative Palynological Characters of the Species in the      |     |
|        | Family Cucurbitaceae Studied with Duncan Multiple Range Test                | 145 |
|        | LIST OF FIGURES                                                             |     |
| Figure |                                                                             |     |
|        | Page                                                                        |     |
| 1      | Single Linkage Cluster Analysis of Cucurbitaceae Species                    |     |
|        | Studied using Quantitative Morphological Characters.                        | 57  |
| 2      | Single Linkage Cluster Analysis of Cucurbitaceae Species                    |     |
|        | Studied using Quantitative Anatomical Characters                            | 116 |
|        | BHEEMIN                                                                     |     |



# LIST OF PLATES

| Plate |                                                                  | Page |
|-------|------------------------------------------------------------------|------|
| 1     | Morphology of Citrullus lanatus (Black Seeds)                    | 28   |
| 2     | Morphology of Citrullus lanatus (Brown Seeds)                    | 30   |
| 3     | Morphology of <i>Cucumis melo</i> (Seeds with Brown Edges)       | 32   |
| 4     | Morphology of <i>Cucumis melo</i> (Seeds with Black Edges)       | 34   |
| 5     | Morphology of Luffa cylindrica                                   | 36   |
| 6     | Morphology of <i>Lagenaria siceraria</i> (Spatulate Fruit Shape) | 38   |
| 7     | Morphology of Lagenaria siceraria (Oval Shape Fruit)             | 40   |
| 8     | Morphology of <i>Cucumeropsis edulis</i>                         | 42   |
| 9     | Morphology of <i>Cucumis sativus</i>                             | 44   |
| 10    | Morphology of <i>Momordica charantia</i>                         | 46   |
| 11    | Morphology of <i>Telfairia occidentalis</i>                      | 48   |
| 12    | Morphology of <i>Cucurbita maxima</i>                            | 50   |
| 13    | Morphology of Trichosanthes anguina                              | 52   |
| 14    | Adaxial and Abaxial Leaf Epidermal Surfaces of                   |      |
|       | Citrullus lanatus (Brown Seeds)                                  | 59   |
| 15    | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of      |      |
|       | Citrullus lanatus (Brown Seeds)                                  | 60   |
| 16    | Adaxial and Abaxial Leaf Epidermal Surfaces of                   |      |
|       | Citrullus lanatus (Black Seeds)                                  | 63   |
| 17    | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of      |      |
|       | Citrullus lanatus (Black Seeds)                                  | 64   |
| 18    | Adaxial and Abaxial Leaf Epidermal Surfaces of Cucumis sativus   | 67   |
|       |                                                                  |      |



| 19 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|----|--------------------------------------------------------------------|----|
|    | Cucumis sativus                                                    | 68 |
| 20 | Adaxial and Abaxial Leaf Epidermal Surfaces of Cucumeropsis edulis | 71 |
| 21 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Cucumeropsis edulis                                                | 72 |
| 22 | Adaxial and Abaxial Leaf Epidermal Surfaces of Cucumis melo        |    |
|    | (Seeds with Black Edges)                                           | 75 |
| 23 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Cucumis melo (Seeds with Black Edges)                              | 76 |
| 24 | Adaxial and Abaxial Leaf Epidermal Surfaces of Cucumis melo        |    |
|    | (Seeds with Brown Edges)                                           | 79 |
| 25 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Cucumis melo (Seeds with Brown Edges)                              | 80 |
| 26 | Adaxial and Abaxial Leaf Epidermal Surfaces of Cucurbita maxima    | 83 |
| 27 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Cucurbita maxima                                                   | 84 |
| 28 | Adaxial and Abaxial of Leaf Epidermal Surfaces of                  |    |
|    | Lagenaria siceraria (Molina) Standl. (Fruit Spatulate)             | 87 |
| 29 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Lagenaria siceraria (Molina) Standl. (Fruit Spatulate)             | 88 |
| 30 | Adaxial and Abaxial of Leaf Epidermal Surfaces of                  |    |
|    | Lagenaria siceraria (Molina) Standl (Fruit Oval)                   | 91 |
| 31 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |    |
|    | Lagenaria siceraria (Molina) Standl. (Fruit Oval)                  | 92 |



| 32 | Adaxial and Abaxial Leaf Epidermal Surfaces of Luffa cylindrica    | 95  |
|----|--------------------------------------------------------------------|-----|
| 33 | Trichomes on Adaxial and Abaxial Leaf Epidermal Surfaces of        |     |
|    | Luffa cylindrica                                                   | 96  |
| 34 | Adaxial and Abaxial Leaf Epidermal Surfaces of Momordica charantia | 99  |
| 35 | Adaxial and Abaxial Leaf Epidermal Surfaces of                     |     |
|    | Telfairia occidentalis (Female)                                    | 102 |
| 36 | Trichome on Adaxial and Abaxial Leaf Epidermal Surfaces of         |     |
|    | Telfairia occidentalis (Female)                                    | 103 |
| 37 | Adaxial and Abaxial Leaf Epidermal Surfaces of                     |     |
|    | Telfaria occidentalis (Male)                                       | 106 |
| 38 | Trichomes on Adaxial and Abaxial Leaf Epidermal surfaces of        |     |
|    | Telfaria occidentalis (Male).                                      | 107 |
| 39 | Adaxial and Abaxial Leaf Epidermal Surfaces of                     |     |
|    | Trichosanthes anguina                                              | 110 |
| 40 | Pollen Grains Shape of Lagenaria siceraria (Fruit Spatulate)       | 118 |
| 41 | Pollen Grain Shapes of Lagenaria siceraria (Fruit Oval)            | 120 |
|    |                                                                    |     |
| 42 | Pollen Grains Shape of Luffa cylindrica                            | 122 |
| 43 | Pollen Grains Shape of <i>Telfairia occidentalis</i> (Male)        | 124 |
| 44 | Pollen Grains Shape of Cucumis melo (Seeds with Black Edges)       | 126 |
| 45 | Pollen Grains Shape of Cucumis melo (Seeds with Brown Edges)       | 128 |
| 46 | Pollen Grains Shape of Citrullus lanatus (Thunb.) (Black Seeds)    | 130 |
| 47 | Pollen Grains shape of Citrullus lanatus (Brown Seeds)             | 132 |
| 48 | Pollen Grains Shape of Cucurbita maxima                            | 134 |



| 49 | Pollen Grains Shape of Trichosanthes anguina | 136 |
|----|----------------------------------------------|-----|
| 50 | Pollen Grains Shape of Cucumis sativus       | 138 |
| 51 | Pollen Grains Shape of Cucumeropsis edulis   | 140 |
| 52 | Pollen Grains Shape of Momordica charantia   | 142 |



### ABSTRACT

Ten species with four varieties in the family Cucurbitaceae were subjected to morphological, anatomical and palynological assessment with a view to finding additional diagnostic characters of taxonomic importance.

The species studied were *Telfairia occidentalis* (Hook. f), *Trichosanthes anguina* Linn., *Citrullus lanatus* (Thunb.) Matsum. and Nakai., *Cucumis melo* Linn., *Lagenaria siceraria* (Molina) Stand., *Cucumeropsis edulis* (Hooker.f) cogn., *Cucurbita maxima* Duch.ex Lam., *Cucumis sativus* Linn., *Luffa cylindrica* M.(Roem) and *Momordica charantia* Linn. The habits of the species were noted while other qualitative morphological characters were studied by direct observation and quantitative morphological characters were studied by direct observation and quantitative morphological characters were studies, epidermal peels and venation study were carried out using standard methods. The palynological study was also carried out using standard methods. Quantitative data obtained were subjected to Analysis of Variance, Duncan Multiple Range Test and Palaentological Statistics (PAST).

The result of the morphological study revealed many morphological similarities among the species with few variations. The Single Linkage Cluster Analysis using morphological quantitative data revealed the clustering of the taxa based on generic similarities with few overlaps. Characters delimiting species based on foliar anatomy include: epidermal cell shape and size on adaxial and abaxial surfaces, anticlinal wall pattern, stomata index and areole size. The plant species were all amphistomatic except in *Telfairia occidentalis* which was hypostomatic. Stomata type was largely brachyparacytic and anomocytic with anisocytic type occurring often. Staurocytic type of stomata was unique to *Cucumeropsis edulis* while contiguous stomata were unique to *Cucumeropsis edulis* and *Telfairia occidentalis* (Female). Glandular multicellular and nonglandular multicellular trichomes were encountered in all the species studied except



in *Trichosanthes anguina* with only nonglandular trichomes. The palynological study revealed the following type of pollen grain shapes in the species studied: Spheroidal, Sub – Spheroidal, Sub – prolate, Sub – oblate, Prolate, Spheroidal to Oblate – Spheroidal, Prolate – Spheroidal. Acolpate, monocolpate, monoporate, bicolporate, tricolporate and tetracolporate pollen types were observed and documented. Tetracolpate pollen was encountered in *Cucumeropsis edulis* only. Classification based on size reveals that all the species studied belong to the Media group except *Momordica charantia* and *Cucurbita maxima*. Many morphological, anatomical and palynological characters separated the male and the female *Telfairia occidentalis* and the varieties of *Lagenaria siceraria, Citrullus lanatus* and *Cucumis melo* studied.

The study provided additional information on the characters and relationships between the species and varieties in the family Cucurbitaceae, using taxonomic evidences derived from morphology, anatomy and palynology.



### **CHAPTER ONE**

### INTRODUCTION

### 1.1 Background to the Study

### Species in the Family Cucurbitaceae

The order Cucurbitales in the eurosid I clade comprises almost 2600 species in 109 or 110 genera in eight tropical and temperate families of very different sizes, morphology and ecology (Zhang et al., 2006; Filipowicz and Renner, 2010; Schaefer and Renner, 2011). More than half of the species are in the mega-diverse genus Begonia of Begoniaceae with 2 genera and 1500 species (Forrest and Hollingsworth, 2003; Forrest et al., 2005; Goodall-Copestake et al., 2009). The remaining species are distributed among the genera of the Cucurbitaceae, a family of mainly herbaceous climbers and woody lianas with 95 genera and 950-980 species (Schaefer and Renner, 2011) and six other families which are: Anisophylleaceae, a group of medium-sized to large trees with 4 genera and 29-34 species (Zhang et al., 2007); holoparasitic Apodanthaceae with 2 or 3 genera and 19 species (Filipowicz and Renner, 2010); small shrubs in Coriariaceae with 1 genus and 15-20 species (Yokoyama et al., 2000); evergreen trees in Corynocarpaceae with 1 genus and 5-6 species (Wagstaff and Dawson, 2000); perennial herbs in Datiscaceae with 1 genus and 2 species (Swensen et al., 1998); and huge rainforest trees in Tetramelaceae with 2 genera and 2 species (Swensen et al., 1998). Cucurbitaceae Juss., which is a moderately large family of flowering plants (Yamaguchi, 1983) and also a very interesting and an outstanding family of dicotyledons, is distributed widely over the tropical parts of the world (Cobbley et al., 1976). They have common features which are large leaves, creeping or climbing



stems usually with simple or branched tendrils, fleshy fruits called pepo, with leathery exocarp, containing numerous seeds, and a woody root stock.

# **1.2** Subfamilies of the Family Cucurbitaceae

The family was divided into two subfamilies by Jeffrey (2005), sub-family Nhandiroboideae representing a single tribe Zanonieae (Zanonioideae) and subfamily Cucurbitoideae which is subdivided into ten tribes which are, Joliffieae, Bryonieae, Trichosantheae, Herpetospermeae, Schizopeponeae, Luffeae, Sicyeae, Coniandreae, Benincaseae, Cucurbiteae. The most recent

subfamilial and tribal classification of Cucurbitaceae (Jeffrey, 2005) is largely supported by molecular data (chloroplast data).

# **1.3** Features of the Species in the Family Cucurbitaceae

Species of the family Cucurbitaceae are usually hairy climbers with simple or branched lateral tendrils, yellow or whitish unisexual flowers, inferior ovary with parietal placentation and numerous relatively large seeds (Schaefer and Renner, 2011). Most Cucurbitaceae are perennial, herbaceous vines (rarely shrubs or trees) that usually climb by means of branched or unbranched tendrils. Shoot growth is monopodial (Bugnon, 1956; Kumazawa, 1964 and Lassnig, 1997). Tendrils in the Cucurbitaceae are generally considered to be part of an axillary complex (Lassnig, 1997), but their morphology differs between the two subfamilies in Cucurbitaceae. In subfamily Nhandiroboideae, a bifid tendril forms as part of the lateral shoot, which arises in the leaf axil (Lassnig, 1997). In contrast, in Cucurbitoideae, the "axillary" complex arises in an extra-axillary position. Cucurbits are among the largest and the most diverse plant families, having a large range of fruit characteristics, and are cultivated worldwide in a variety of



environmental conditions. Cucurbits are associated with the origin of agriculture and human civilizations and are also among the first plant species to be domesticated in both the Old and the New World. In Cucurbitaceae, 50% of the species are monoecious and 50% dioecious; very few species are androdioecious or bisexual (Schaefer and Renner, 2011). Shifts between monoecy and dioecy occur, both within genera e.g., *Bryonia*, (Volz and Renner, 2008); *Luffa*, (Schaefer and Renner, 2011); *Momordica*, (Schaefer and Renner, 2010) and within species e.g. *Ecballium*, (Costich, 1995). Cucurbitaceae are most diverse in tropical and subtropical regions with hotspots in Southeast Asia, West Africa, Madagascar, and Mexico (Schaefer and Renner, 2011).

# 1.4 Economic Importance of the Species in the Family Cucurbitaceae

*Cucurbit* species are among the economically most important vegetable crops worldwide and are grown in both temperate and tropical regions (Pitrat *et al.*, 1999 and Paris, 2001). They are an important source of vegetables, fruits, edible seeds and seed oil, domestic utensils, medicines, water, animal fodder and fuel. Many Begonias are popular ornamentals and the Family Cucurbitaceae include some of the World's most important vegetable crops, such as melon (*Cucumis melo L.*), cucumber (*C. sativus L.*), water melon (*Citrullus lanatus* (Thunb.) Matsumura and Nakai), squash and pumpkin which are *Cucurbita* spp. Some species of family Tetramelaceae are sources of a relatively soft timber, used for pulp and container production, and their young leaves are eaten as vegetables (Soerianegara and Lemmens, 1995). Examples of species grown as food crops include the Cucumber (*Cucumis sativus*), Rock and Honeydew melons (*Cucumis melo var. melo*), Water Melon (*Citrullus lanatus*), West Indian Gherkin (*Cucumis anguria*), Pumpkins and Squashes (*Cucurbita moschata* and *C. maxima*), Snake Gourd (*Trichosanthes anguina*), Bitter Gourd (*Momordica charantia*) and Pepitos (*Cucurbita pepo*). Other uses include medicinal applications, *e.g.* as an abortifacient, as a treatment for diabetes,



and for ear ache. Gourds in the family are used as containers and as resonators in musical

instruments such as the sitar (Vaughan & Geissler (1997).

*Cucumis sativus* are consumed raw or pickled (gherkin). Mature uncooked cucumbers bring relief for individuals suffering from celiac disease, and promote skin health. Edible oil can be extracted from the seeds and used for cooking. Immature cucumbers can be cooked and consumed to treat dysentery. The fruit is also valued in the cosmetic industry, used to soften the skin. A poultice made from fresh cucumbers can be applied to burns and open sores. The seeds can be used to expel parasitic worms. Cucumber peel when eaten by cockroaches is reported to kill them after several nights, the juice from the leaves induce vomiting and aid digestion. The seedlings are toxic and should not be consumed (Grubben, 2004). The fiber of a mature loofah fruit (*Luffa sp.*) can be used as a sponge for personal hygiene, household cleaning and various other purposes, including filtration. Seeds or fruit parts of some Cucurbits are reported to possess purgatives, emetics and antihelmintics properties due to the secondary metabolite Cucurbitacin content (Robinson and Decker-Walters, 1997). The importance of "Egusi" crops has been raised under various circumstances by other authors like Schippers (2000; 2004) and Vodouhe *et al.* (2001) as a weed

For more information, please contact ir-help@oauife.edu.ng