

EFFECTS OF AGRO-INDUSTRIAL WASTE ON THE PHYTOREMEDIATING POTENTIAL OF SUNFLOWER IN HYDROCARBON-CONTAMINATED SOIL

 \mathbf{BY}

AHMED Danfulani Habiba

B. Sc. (Biology), Ahmadu Bello University, Zaria (REG. NO. SCP10/11/H/0272)

A THESIS SUBMITTED TO THE INSTITUTE OF ECOLOGY AND ENVIRONMENTAL STUDIES, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL CONTROL AND MANAGEMENT

2013

CERTIFICATION

This is to certify that this research work was carried out by AHMED Danfulani Habiba (SCP10/11/H/0272) in the Institute of Ecology and Environmental Studies, Obafemi Awolowo University Ile – Ife, Nigeria under my supervision.

•••••	••••••
Supervisor	Date
Dr. M. B. Adewole	
Institute of Ecology and Environmental Studies	
Obafemi Awolowo University, Ile – Ife, Nigeria	
2, , , ,	
Dr. O. A. Awataya	Date
Dr. O. O. Awotoye	Date
Director	
Institute of Ecology and Environmental Studies,	
Obafemi Awolowo University, Ile – Ife, Nigeria.	

DEDICATION

This work is dedicated to Almighty Allah (SWT) and my lovely parents. May Allah's love and endless blessings continue to strengthen me in all my endeavours.

ACKNOWLEDGEMENTS

I thank Almighty Allah (SWT) for his grace and endless blessings which enabled me to start and complete this programme. May His love continue to strengthen me. I will like to express my profound appreciation to my project supervisor, Dr. M. B. Adewole, for his suggestions, patience and time given to me during the period of my research. Above all, his fatherly advice and nice gestures at all times. I wish to acknowledge the Director, Dr. O. O. Awotoye, the staff of the Institute of Ecology and Environmental Studies who have in one way or the other gave me supports during the period of my M.Sc. programme.

I am highly grateful to my parents, Prof. and Mrs. Ahmed Danfulani who always pray for the best for me, for their sweet love and supports always. You are the best in this world. To my siblings, (Aunty Fatima, Captain Danfulani, Barr. Kaydeejay and Arch. Meenahdan; Royal/soulja gurl). Also, my brother's wife and my little niece Ruqayyah Amope, I love you all.

I am grateful to the Director General of National Biotechnology Development Agency (Prof. Bamidele Solomon) and the Director, Department of Environmental Biotechnology [Dr. (Mrs.) Onyia], for giving the opportunity to come for my M.Sc. I am also grateful to Mr. Oladapo of IAR & T, Ibadan, who guided in my laboratory work. I cannot forget all my good friends (Akeem, Eedriss, Boye, Stephen, Lekan; the list is endless) who helped me with my field work despite their very tight schedules. Thank you, may God be with you all.

Finally, to my lovely husband, Yousuph Omobolaji thank you for the love, great support and understanding always.

TABLE OF CONTENTS

TITLE	PAGE
TITLE	i
CERTIFICATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	įv
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF PLATES	XV
ABSTRACT	xvi
CHAPTER ONE: INTRODUCTION	
1.1 Background of the Study	1
1.2 Effects of Organic Fertilizer in Contaminated Soil	3
1.3 Justification for the Study	3
1.4 Specific Objectives of the Study	4
CHAPTER TWO: LITERATURE REVIEW	
2.1 History of Crude Oil Exploration and Exploitation in Nigeria	5
2.2 Events of Oil Spills in Nigeria	6
2.2.1 Effects of Oil Spills on the Environment	8
2.3 Methods Used to Manage Crude Oil Spillage on Soil	11
2.3.1 Excavation or Dredging	12
2.3.2 Chemical Remediation	12
2.3.2.1 Solidification and Stabilization	12
2.3.2.2 Soil Vapour Extraction	13

		2.3.2.3 Chemical Oxidation	13
		2.3.2.4 Soil Flushing	14
		2.3.2.5 Electro Kinetic Separation	14
	2.3.3	Thermal Remediation	15
		2.3.3.1 Electrical Resistance Heating	15
		2.3.3.2 Conductive Heating	16
		2.3.3.3 Radio-frequency Heating	16
		2.3.3.4 <i>In -situ</i> Vitrification	16
2.4	Biolog	gical Treatment	17
2.5	Mecha	anisms of Phytoremediation	18
	2.5.1	Phytoextraction	18
		2.5.1.1 Advantage of Phytoextraction	19
		2.5.1.2 Disadvantage of Phytoextraction	19
	2.5.2	Rhizofiltration	20
	2.5.3	Phytostabilization	20
	2.5.4	Phytotransformation	22
	2.5.5	Containment and Immobilization	23
	2.5.6	Phytovolatization	23
2.6	Phyto	remediation and Bioaccumulation of Metals by Plants	24
2.7	Techn	iques Used to Enhance Phytoremediation Process	26
	2.7.1	Plant Bacteria-symbiosis	26
	2.7.2	Plants-fungi Symbiosis	27
	2.7.3	Transgenic Plants	27
	2.7.4	Use of Organic and Inorganic Fertilizer	28
2.8	Limita	ations of Phytoremediation	29

	2.8.1	Metal Bioavailability	29
	2.8.2	Plant Uptake and Translocation	30
	2.8.3	Plant Microbe Interactions	30
	2.8.4	Soil Structure, Texture and Organic Matter Content	31
	2.8.5	Root System	31
	2.8.6	Contaminant Concentration	31
	2.8.7	Plant Growth Rate	32
	2.8.8	Impacts of Contaminated Vegetation	32
2.9	Advar	ntages and Disadvantages of Phytoremediaton	32
2.9.1	Advar	ntages of Phytoremediation	32
2.9.2	Disad	vantages of Phytoremediation	33
2.10	Origin	n, Physiological Behavior and Importance of Sunflower	35
2.11	Impac	t of Organic Wastes on Phytoremediating Potential of Sunflower	36
CHAI	PTER T	THREE: MATERIALS AND METHODS	37
3.1	Growt	th Parameters Measurement	38
3.2	Labora	atory Analysis	38
	3.2.1	Soil Samples	38
	3.2.2	Plant and Samples	39
	3.2.3	Determination of Total Petroleum Hydrocarbon Content	40
	3.2.4	Proximate Analysis of the Seeds	40
		3.2.4.1 Crude Protein Determination	40
		3.2.4.2 Crude Fat Determination	41
		3.2.4.3 Determination of Ascorbic Acid (Vitamin C)	41
		3.2.4.4 Determination of Carbohydrate (CHO)	42
		3.2.4.5 Determination of Reducing Sugar	42

	3.2.4.6 Determination of ph	42
	3.3 Statistical Analysis	42
CHAI	PTER FOUR: RESULTS	43
4.1	Pre-Soil Test Analysis	43
4.2	Growth Performance of Sunflower in Pot Culture at Different Weeks	43
	4.2.1 Plant Height of Sunflower	43
	4.2.2 Number of Leaves of Sunflower	46
	4.2.3 Stem Girth of Sunflower	46
	4.2.4 Leaf Area of Sunflower	46
4.3	Nitrogen, P, K and Organic Carbon Contents of the Soil after the	50
	Harvest of Sunflower Grains	
4.4	Calcium, Mg and Na Concentrations in the Post Soil Test	50
4.5	pH and Exchangeable Acidity of the Post-Soil Test	50
4.6	Lead, Cd and THC Contents of the Post Soil Test	57
4.7	Concentrations of N, P and K in the Shoot of Sunflower at Different	57
	Dosages of Manures and Crude Oil Applications	
4.8	Concentrations of Ca, Mg and Na in the Shoot of Sunflower at Different	57
	Dosages of Manures and Crude Oil Applications	
4.9	Concentrations of Fe, Zn Cu and Mn in the Shoot of Sunflower at Different	64
	Dosages of Manures and Crude Oil Applications	
4.10	Concentrations of Pb, Cd and THC in the Shoot of Sunflower at Different	64
	Dosages of Manures and Crude Oil Applications	
4.11	Concentrations of N, P and K in the Root of Sunflower at Different	64
	Dosages of Manures and Crude Oil Applications	
4.12	Concentrations of Ca, Mg and Na in the Root of Sunflower at Different	71

Dosages of Manures and Crude Oil Applications 71 4.13 Concentrations of Fe, Zn Cu and Mn in the Root of Sunflower at Different Dosages of Manures and Crude Oil Applications 71 4.14 Concentrations of Pb, Cd and THC in the Root of Sunflower at Different Dosages of Manures and Crude Oil Applications 4.15 Concentrations of N, P and K in the Grains of Sunflower at Different 78 Dosages of Manures and Crude Oil Applications 4.16 Concentrations of Ca, Mg and Na in the Grains of Sunflower at Different 78 Dosages of Manures and Crude Oil Applications 4.17 Concentrations of Fe, Zn and Cu in the Grains of Sunflower at Different 78 Dosages of Manures and Crude Oil Applications 4.18 Concentrations of Selected Heavy Metals and THC in the Grains of 85 Sunflower at Different Dosages of Manures and Crude Oil Applications 4.19 Proximate Analysis of the Grains of Sunflower at Different Dosages of 85 Manures and Crude Oil Applications Mean Shoot Yield (10⁻² kg pot⁻¹) of Sunflower 4.20 85 4.21 Shoot Uptake of Selected Heavy Metals 91 4.22 Mean Weight of the Root of Sunflower 91 4.23 Root Uptake of Selected Heavy Metals and THC 91 4.24 Mean Weight of the Grains of Sunflower 97 Selected Heavy Metals and THC Uptake in the Grains of Sunflower 97 4.25 **CHAPTER FIVE: DISCUSSION** 103 Concentration of Selected Nutrients and THC in the Soil before and 5.1 103 After the Growing Period of Sunflower 5.2 Effects of Different Dosages of Manures and Crude Oil Applications 105

on the Growth Parameters of Sunflower

5.3	Effects of Manure Treatment on the Concentration of Selected Nutrients	106
	in the Shoots and Roots of Sunflower	
5.4	Effects of Manure and Crude Oil Dosage on the Concentrations of	107
	Selected Heavy Metals and THC in the Shoots and Roots of Heavy Metals	
5.5	Effects of Manure and Crude Oil Dosage on the Yield of Shoots and	107
	Roots of Sunflower	
5.6	Effects of Manures on the Uptake of Selected Heavy Metals and THC by	107
	Sunflower Shoots and Roots	
5.7	Effects of Different Dosages of Manure and Crude Oil on the Selected	108
	Nutrient Concentrations, Heavy Metals Uptake and Weight of	
	Sunflower Grains	
5.8	Effects of Manure and Petroleum Hydrocarbon Concentrations on the	108
	Proximate Analysis of Sunflower Grains	
СНАР	PTER SIX: CONCLUSION AND RECOMMENDATION	109
REFERENCES		110
APPENDICES		126

LIST OF TABLES

TABL	LE TITLE	Page
4.1	Physical and Chemical Characteristics of Soil used for the Study	44
4.2	Influence of Different Rates of Manures and Crude Oil on the	51
	Concentrations of N, P, K and Organic Carbon Contents of the	_\
	Soil after the Harvest of Sunflower	
4.3	Influence of Different Rates of Manures and Crude Oil on the	53
	Concentrations of Ca, Mg and Na Concentrations (cmol kg ⁻¹) in	
	the Post Soil Test	
4.4	Influence of Different Rates of Manures and Crude Oil on the	55
	Concentrations of pH and Exchangeable Acidity of the Post Soil Test	
4.5	Influence of Different Rates of Manures and Crude Oil on the	58
	Concentrations of Pb, Cd and THC (mg kg ⁻¹) Contents of the Post-Soil Te	st
4.6	Influence of Different Rates of Manures and Crude Oil on the	60
	Concentrations of N, P and K in the Shoot of Sunflower	
4.7	Influence of Different Rates of Manures and Crude Oil on the	62
	Concentrations of N, P and K in the Shoot of Sunflower	
4.8	Influence of Different Rates of Manures and Crude Oil on the	65
	Concentrations of Fe, Mn, Zn and Cu (mg kg ⁻¹) in the Shoot of Sunflower	r
4.9	Influence of Different Rates of Manures and Crude Oil on the	67
	Concentrations of Pb, Cd and THC (mg kg ⁻¹) in the Shoot of Sunflower	
4.10	Influence of Different Rates of Manures and Crude Oil on the	69
	Concentrations of N, P and K in the Root of Sunflower	

4.11	Influence of Different Rates of Manures and Crude Oil on the	72
	Concentrations of Ca, Mg and Na (cmol kg ⁻¹) in the Root of Sunflower	
4.12	Influence of Different Rates of Manures and Crude Oil on the	74
	Concentrations of Fe, Zn, Cu and Mn (mg kg ⁻¹) in the Root of Sunflower	
4.13	Influence of Different Rates of Manures and Crude Oil on the	76
	Concentrations of Pb, Cd and THC (mg kg ⁻¹) in the Root of Sunflower	
4.14	Influence of Different Rates of Manures and Crude Oil on the	79
	Concentrations of N, P and K in the Grains of Sunflower	
4.15	Influence of Different Rates of Manures and Crude Oil on the	81
	Concentrations of Ca, Mg and Na (cmol kg ⁻¹) in the Grains of Sunflower	
4.16	Influence of Different Rates of Manures and Crude Oil on the	83
	Concentrations of Selected Nutrient (mg kg ⁻¹) in the Grains of Sunflower	
4.17	Influence of Different Rates of Manures and different Levels of Crude Oil	86
	on the Concentrations of Selected Heavy Metals and THC (mg kg ⁻¹) in	
	the Grains of Sunflower	
4.18	Influence of Different Rates of Manures and Crude Oil on the Proximate	88
	Composition of the Grains of Sunflower	
4.19	Influence of Different Rates of Manures and different Levels of Crude Oil	90
	on the Mean Shoot Yield (10 ⁻² kg pot ⁻¹) of Sunflower	
4.20	Influence of Different Rates of Manures and Crude Oil on	92
	Pb, Cd and THC (mg kg ⁻¹) Uptake in the Shoot of Sunflower	
	with Different Dosages of manures and Contaminants	
4.21	Influence of Different Rates of Manures and Crude Oil on the	94
	Mean Root Weight of Sunflower	

4.22	Influence of Different Rates of Manures and Crude Oil	95
	on Pb, Cd and THC (mg kg ⁻¹) Uptake in the Root of Sunflower	
	with Different Dosage of Manure and Contaminants.	
4.23	Influence of Different Rates of Manures and Crude Oil on the	98
	Mean Grain (x 10 ⁻² kg) Weight of Sunflower	
4.24	Influence of Different Rates of Manures and Crude Oil on the	99
	Pb, Cd and THC (mg kg ⁻¹) Uptake in the Grains of Sunflower with	
	Different Dosage of Manure and Contaminants	
4.25	Influence of Different Rates of Manures and Crude Oil on the	101
	Distribution Pattern of THC uptake (mg kg ⁻¹) in Parts of Sunflower	

LIST OF FIGURES

FIGU	RE	TITLE
Page		
4.1	Effects of Different Rates of Crude oil on the Height of Sunflower when	45
	Different Rates of Manure are Applied.	1
4.2	Effects of Different Rates of Crude oil on the Number of Leaves of	47
	sunflower when Different Rates of Manure are Applied.	
4.3	Effects of Different Rates of Crude Oil on the Height of Sunflower when	48
	Different Rates of Manure are Applied.	
4.4	Effects of Different Rates of Crude Oil on the Leaf of Sunflower when	49
	Different Rates of Manure are Applied.	

LIST OF PLATES

Plate		Page
1	Growth Response of Sunflower at Zero Tonne of Manure Application	129
	and Different Levels of Crude Oil Four Weeks After Planting	
2	Growth Response of Sunflower at Four Tonnes of Manure Application and	130
	Different Levels of Crude Oil Four Weeks After Planting	7
3	Growth Response of Sunflower at Eight Tonnes of Manure Application and	131
	Different Levels of Crude Oil Four Weeks After Planting	
4	Growth Response of Sunflower to Different Manure Applications and Zero	132
	Crude Oil Contamination Four Weeks After Planting	
5	Growth Response of Sunflower to Different Manure Applications and	133
	Zero Crude Contamination Four Weeks After Planting	

ABSTRACT

This study investigated the growth performance and yield of sunflower (*Helianthus annuus* L.) under different concentrations of petroleum hydrocarbon contaminated soils. This was with a view to assessing the phytoremediating potentials of the test crop when different agro-industrial wastes were applied as soil enhancers.

The study was carried out at the screenhouse of the Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife. Poultry droppings were collected from the University Teaching and Research Farm and composted. Sawdust was collected from sawmills along Road Seven, Ile-Ife and ashed. The composted poultry manure and the ashed sawdust were mixed at different ratios [0:100 (PW₀SD₁₀₀), 25:75 (PW₂₅SD₇₅), 50:50 (PW₅₀SD₅₀), 75:25 (PW₇₅SD₂₅), 100:0 (PW₁₀₀SD₀)] to act as enhancers. Bulk surface soil sample from an exhaustively cropped land was collected, air-dried and sieved through a 2 mm mesh. One hundred and thirty five pots with perforations at the bottom, each with five kilograms of the air-dried soil was contaminated to different levels (0, 1, and 2%) of crude oil from Nigerian National Petroleum Corporation, Eleme, Rivers State. The manures were applied at the rates (0, 4, 8 t ha⁻¹) two weeks before planting of sunflower seeds and pots were watered to field moisture capacity with distilled water. Viable seeds of sunflower from Institute of Agricultural Research and Training, Ibadan were sown at four seeds per pot and the emerged seedlings were thinned to two stands per pot two weeks after sowing. The pots were maintained weed-free throughout the experimental period. Growth parameters (plant height, stem girth, number of leaves and leaf area) of sunflower were measured fortnightly. The root, shoot and grain yield of sunflower were harvested at full maturity and analysed for Pb, Cd and total petroleum hydrocarbon (TPH). Pre

and post cropping analyses of soils were carried out to determine the nutrients, Pb, Cd and TPH using standard methods. Data obtained were subjected to ANOVA and descriptive statistics.

Seedling emergence was recorded in all the pots and they all survived till the end of the growing period, except for 2% crude oil contaminated pots without 100% and 75% poultry wastes. Highest growth performance was recorded in pots with no contamination but with PW₁₀₀SD₀ (186 cm, 36, 3.8 cm, 141 cm² and 23.0 g /pot) while the control pots had the least growth performance of 117 cm, 12, 2.0 cm, 19 cm² and 16.8 g/pot) for the plant height, number of leaves, stem girth, leaf area and shoot yield respectively. The highest uptake values of Pb, Cd and THC in the shoot were: 0.99, 1.01 and 1.98 mg kg⁻¹ while the roots: 1.78, 1.80 and 1.74 mg kg⁻¹ respectively at 2% contamination when 8 t ha⁻¹ of PW₁₀₀SD₀ was applied. The uptake of Pb 0.43, Cd 0.48 and TPH 0.83 mg kg⁻¹ was obtained in the grains at 2% contamination when 8 t ha⁻¹ of PW₁₀₀SD₀ was applied. Addition of composted poultry manure and ashed sawdust increased the soil acidity by 18% and this enhanced the bioavailability of other soil properties.

The study concluded that sunflower plant could be effectively used for the remediation of petroleum hydrocarbon-contaminated soils and poultry manure compost mixed with ashed sawdust enhanced the remediating ability.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

The exploration and exploitation of the environment date back to the existence of man on earth (Ekundayo, 1988). Oil exploration and exploitation are two of the activities that started at different times in different parts of the world. Before the discovery of crude oil, Nigerian economy survived and flourished on agriculture. The history of oil exploration in Nigeria could be traced to the first decade of the last century (Charles *et al.*, 2009). Olujimi *et al.* (2011) observed that exploration and exploitation has not only caused degradation to the environment and destroyed the traditional livelihood of the people but has also caused environmental pollution that has affected weather conditions, soil fertility, waterways aquatic habitats and wildlife. Processing and distribution of petroleum hydrocarbon as well as the use of petroleum products are the main cause of soil contamination (Ayotamuno *et al.*, 2006). Oil spill incidents have occurred in various parts and at different times along our coast, if these are not monitored or controlled, they could lead to general loss of our God given environment.

Soil is the collection of natural bodies on the earth surface supporting or capable of supporting crops and showing properties resulting from integrated effect of climate and living organisms on parent rock as conditioned by relief and time. Soil is very important to human existence for various reasons especially agriculture. However, soil has been subjected to several abuses including spillage of petroleum (crude oil) and petroleum by-products, dumping of wastes and other contaminating activities (Wellingia *et al.*, 1999; Nwaugo *et al.*, 2007; Osam, 2011).

Environmental remediation is the removal of pollutants or contaminants from environmental media such as soil, groundwater, sediment, or surface water for the general protection of human health and the environment. Remediation is generally subject to an array of regulatory requirements, and also can be based on assessments of human health and ecological risks where no legislated standards exist or where standards are advisory.

There are several techniques of remediation. The selection of any soil remediating method depends on the penetration depth of the contaminant into the soil and on the nature of the soil if the contaminants in the subsoil are biodegradable. Some of these methods could have adverse effects on the environment, while some could be expensive to use. An environmentally sound technology that addresses the inadequacies of these remediation practices will therefore be pertinent in this era of global economic meltdown (Osam *et al.*, 2011). Phytoremediation technology is more favorable due to its potential for cleaning up environment and the overall aesthetic perfection of the contaminated sites (Chen and Cutright, 2002; Fayiaga *et al.*, 2004).

Phytoremediation is the use of plants for the cleaning up of environments contaminated with hazardous wastes. Plants can be used in site remediation both through the mineralization of toxic organic compounds as well as through the bioaccumulation and concentration of heavy metals and other inorganic compounds (Nishi *et al.*, 2010). Plants act as solar-powered pumpand-treat systems as they take up water-soluble contaminants through their roots and transport/translocate them through various plant tissues where they can be metabolized, sequestered, or volatilized.

High biomass producing plant species such as sunflower have potential for extracting heavy metals in polluted soils. The importance of sunflower is enormous; one of these importances is an emerging technology known as phytoremediation, whereby, plants with high biomass have capability of removing large amounts of trace metals by harvesting the

aboveground biomass. Adewole *et al.*, (2008a) observed that cultivable sunflower has the ability to store heavy metals in their roots such as Cd, Zn and Pb

1.2 Effects of Organic Fertilizer in Hydrocarbon Contaminated Soils.

Organic fertilizer refers to soil amendment derived from natural sources that guarantees, at least, the minimum percentages of nitrogen, phosphate, and potassium. The nutrients in organic fertilizers are released much more slowly than synthetically produced ones. Fertilizer stimulates microbial growth and increases rate of hydrocarbon biodegradation. Organic fertilizers not only provide essential nutrients to plants, they also improve soil structure. Organic matter helps break up heavy clay soil, improve air circulation and drainage, and also increases the capacity for sandy soils to retain moisture. Good soil structure makes it easier for the roots of plants to reach moisture and to absorb the nutrients and also take along the contaminants from the contaminated soil.

1.3 Justification for the Study

One of the problems of environmental degradation in Nigeria till date is contamination from crude oil. Soils contaminated with crude oil are abandoned due to their inability to support agricultural activities. There is dearth of information on the use of sunflower for the phytoremediation of crude-oil-contaminated soil. This study therefore seeks to assess the ability of sunflower to phytoremediate crude-oil-contaminated soil under different organic fertilizers as enhancers.