
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228989852

Performance modeling of an enhanced optimistic locking architecture for

concurrency control in a distributed database system

Article  in  Journal of Research and Practice in Information Technology · December 2005

Source: DBLP

CITATIONS

11
READS

134

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Software Defined Networking (SDN) View project

Development of LWAs for Scheduling Proactive Maintenance on Communication Network View project

Ganiyu A. Aderounmu

Obafemi Awolowo University

53 PUBLICATIONS   152 CITATIONS   

SEE PROFILE

Matthew Adigun

University of Zululand

163 PUBLICATIONS   421 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Matthew Adigun on 23 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228989852_Performance_modeling_of_an_enhanced_optimistic_locking_architecture_for_concurrency_control_in_a_distributed_database_system?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228989852_Performance_modeling_of_an_enhanced_optimistic_locking_architecture_for_concurrency_control_in_a_distributed_database_system?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Defined-Networking-SDN-7?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Development-of-LWAs-for-Scheduling-Proactive-Maintenance-on-Communication-Network?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiyu_Aderounmu?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiyu_Aderounmu?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Obafemi_Awolowo_University?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiyu_Aderounmu?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Adigun?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Adigun?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Zululand?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Adigun?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Adigun?enrichId=rgreq-56ea413c15ca77d54c9bcc6765ac43ab-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4OTg1MjtBUzo5OTkzMTQxNTEyMTk0MEAxNDAwODM2OTE0NzU1&el=1_x_10&_esc=publicationCoverPdf


Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 365

Performance Modeling of an Enhanced Optimistic Locking
Architecture for Concurrency Control in a Distributed
Database System
A.A. Akintola, G.A. Aderounmu and A.U. Osakwe 
Department of Computer Science and Engineering
Obafemi Awolowo University, Ile-Ife, Nigeria

M.O. Adigun
Department of Computer Science
University of Zululand, Kwadlangezwa, Republic of South Africa
{aakintola69, gaderoun}@yahoo.com; alukay2k@hotmail.com; madigun@pan.uzulu.ac.za

Optimistic methods of concurrency control are gaining popularity. This is especially true with the
resurgence of mobile and distributed databases during the last decade, which inherently rely on
optimistic techniques to improve availability and performance of the distributed database systems.
A key problem with optimistic techniques is that they do not perform well in highly conflict prone
environments. Pessimistic techniques, especially locking, perform much better under these
circumstances. In this research effort, the authors explored a hybrid technique called optimistic
locking architecture that provides locking for high conflict data items and optimistic access for the
rest. The model uses self-tuning that does not require the transaction manager, the transaction or
the user to incorporate any additional knowledge or to specify which data items or transactions
are optimistic. Rather, the system uses a data structure called lock buffer to maintain optimal level
of locks in the system. The empirical results obtained show that the performance of optimistic
concurrency control techniques can be significantly improved by using a relatively small lock
buffer. The analysis of the results also show improved performance degradation which is suitable
to the distributed database environment.

ACM Classification: C.2.4: Distributed Systems

Manuscript received: 16 October 2004
Communicating Editor: Arthur Sale

Copyright© 2005, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
Concurrency control in a database system is the activity of coordinating the actions of transactions
that operate in parallel; access shared data, and potentially interferes with one another. It is desirable
that this coordination be efficient. There are two costs associated with concurrency control: Lost
opportunity cost and restart cost. The former cost is a significant factor in conservative methods,
which involve waiting to ensure that there will be no conflict or interference. Some of this waiting
may be unnecessary, constituting a lost opportunity cost. Restart cost is significant in aggressive
methods, which optimistically execute transactions, based on the assumption conflict does arise;
some transactions must be aborted and restarted, thus incurring a restart cost. Devising a concurrency



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005366

control technique that has both a low lost opportunity cost and a low restart cost is a hard problem
(Rashmi, 2002).

With the demand for higher performance and higher availability, computers have moved from
centralized to distributed architectures. This introduces new issues in the area of database management.
In a distributed database systems, according to Imielinski and Badrinath (1994), the data is stored at a
number of sites that are geographically distributed over a possibly large region, a country or even the
whole world. For many distributed applications like banking, telecommunications, etc. distributed
database represent a more natural and appropriate solution than monolithic, centralized systems. Many
of today’s commercial database system such as Oracle 9i or IBM DB2 Propagator provide the required
support for data distribution and inter-database communication. As new communication technologies
are emerging, wireless and mobile computing concepts become reality and allow for an even higher
degree of distributed databases. Wireless technology thus expands the scope of distributed applications
by enabling ubiquitous database interaction anywhere and anytime.

In this evolving world of distributed databases, data replication plays an increasingly important
role. Replication intends to increase data availability in the presence of site or communication
failures, and to decrease retrieval costs by local access if possible. The maintenance of replicated data
is therefore closely related to intersite communication, and replication management can have
significant impact on the overall system performance (Nicola and Jarke, 2000). During the last years,
several distributed systems have been realized. Usually, the concurrency control in these systems has
been done by some kind of two-phase locking, but as processor speed increases relative to I/O and
communication speed, it is expected that timestamp ordering should be able to compete with two-
phase locking in performance (Norvag, Sandsta and Bratbergsengen, 1997).

While the distributed concurrency control performance studies to data have been informative, a
number of important questions remain unanswered. These include:

• how do the performance characteristics of the various basic algorithm classes compare under
alternative assumptions about the nature of the database, the workload, and the computational
environment?

• how does the distributed nature of transactions affect the behaviour of the various classes of
concurrency control algorithms?

• how much of a performance penalty must be incurred for synchronization and updates when the
data is replicated for availability or query performance reasons?

According to Kohler and Jeng (1985), most distributed concurrency control algorithms fall into
one of three basic classes: locking algorithms, timestamp algorithms, and optimistic or certification
algorithms. In this paper, the authors intend to use a hybrid model comprising of the locking and
optimistic algorithms hence the name of the proposed architecture-optimistic looking model.

2. DISTRIBUTED DATABASE SYSTEM
A distributed database system (DDBS) is a collection of several logically related databases which are
physically distributed in different computers (otherwise called sites) over a computer network (Ozsu
and Valduriez, 1991; Bell and Grimson, 1992). All sites participating in the distributed database
enjoy local autonomy in the sense that the database at each site has full control over itself in terms
of managing the data. Also, the sites can inter-operate whenever required. According to Date (1991),
the user of a distributed database has the impression that the whole database is local except for the
possible communication delays between the sites. This is because a distributed database is a logical
union of all the sites and the distribution is hidden from the user.



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 367

DDBS is preferred over a non-distributed or central database system (DBS) for various reasons.
Distribution is quite common in an enterprise. For instance, various branches of the enterprise can be
located at various geographic locations. Also, there can be logical divisions in a branch such as human
resources department and administration department. Each logical division can be treated as a site. At
each site, a DDBS provides all capabilities of a DBS local to that site in addition to providing other
advantages of a distributed system such as replication and fault tolerance. Though the concept of data
distribution seems to be attractive, the data is very high. Also, data distribution makes concurrency
control and recovery mechanisms complex. In this research effort, the authors intend to look at con-
currency control mechanisms and how a hybrid scheme can be deployed effectively.

In a DDBS, the presence of distribution complicates the coordination mechanism of sites. Three
important issues differentiate the DDBS from the traditional DBS, these are:

• Replication – this can be done by storing multiple copies of an entire table or partitions of a table
(caked fragment) at multiple sites (Elmasri and Navathe, 2000). According to Date (1991),
replication provides at least two benefits: high availability and improved performance.

• Fault tolerance – the problems due to distribution become complex during site failure (s). Failures
can occur at various levels of a DDBS. Bell et al (1992) categorized failures in a DDBS under four
headings: transaction – local failures, site failures, media failures, and network failures.

• Concurrency control- in DDBS, the concept of transaction is complicated because a transaction
may access data stored at more than one site. Typically, a transaction is divided into sub-
transactions that can be executed at different sites. Bell et al (1992) defines transaction as a series
of actions carried out by a user or application. The actions defined in a transaction are either
executed completely or not executed at all (this property is also termed atomicity). The
uncertainty in the order of execution of sub-transactions may result in different output or different
state of the database. In this context, concurrency control is a process of controlling the relative
order of two or more sub-transactions that interfere with each other.

3. ARCHITECTURE OF DISTRIBUTED DATABASE
A distributed database management system (DDBMS) involves a collection of sites interconnected by a
network. Each site runs one or more of the following software modules: a transaction manager (TM), a
data management (DM), and a concurrency control scheduler (or simply scheduler). In a client-server
model, a site can function as a client, a server, or both. A client runs only the TM module, and a server
runs only the DM and scheduler modules. Each server stores a portion of the database. Each data item
may be stored at any server or redundantly at several servers. Figure 1 shows the system architecture for
the client-server model. Users interact with the DDBMS by executing transactions, which are on-line

Figure 1: Architecture of a Distributed Database System



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005368

queries or application programs. TMs supervise interactions between transactions and the database. The
TM at the site where the transaction originates is called the initiating TM. The indicating TM receives
operations issued by a transaction, and forwards them to the appropriate schedulers. The goal of a
scheduler is to order operations so that the resulting execution is correct. DMS manage the actual
database by executing operations, and are responsible for recovery from failures. Transactions
communicate with TMs, TMs communicate with schedulers and DMs, and DMS manage data.

Architecturally, a DDBS consists of a (possibly empty) set of query sites and a non-empty set of
data sites. The data sites have data storage capability while the query sites do not. The latter only run
the user interface (in addition to applications) in order to facilitate data access at data sites, as shown in
Figure 2. According to Ozsu et al (1991), the problem of distributed query processing is to decide on a
strategy for executing each query over the network in the most cost- effective way. Two measures of
query optimization are response time and throughput. Response time is the time taken by a system to
respond to a query. Throughput is the average number of transactions successfully passing through the
system. The problem is non-deterministic polynomial-hard (NP-hard) in nature, and the factors to be
considered are distribution of data, communication costs, local processing costs, etc. The authors
believe that concurrency control and recovery are two important transaction managements.

3.1 Distributed Transaction Management
In a DDBMS, the challenge in synchronizing concurrent user transactions is to extend both the
serializability argument and the concurrency control algorithms to the distributed environment. The
global serializability requires that the execution of the set of transactions at each site is serializable and
that the serialization orders of these transactions at all these sites are identify\cal. A distributed DMBS
also has to deal with communication failures. Distributed recovery protocol deal with the problem of
recovering the database at a failed site to a consistent state when that site recovers from the failure. A
general distributed transaction in terms of the processes involved in its execution is depicted in Figure
3. Each transaction has a master process (M) that runs at its site of origination. The master process in
turn set up a collection of cohort processes (Ci) to perform the actual processing involved in running
the transaction. Since virtually all query processing strategies for DDBSs involve accessing data at the
site(s) where it resides, rather than accessing it remotely, there is at least one such cohort for each site
where data is accessed by the transaction. DDBSs differ in the degree of parallelism involved in query
execution. In general, data may be replicated, in which case each cohort that updates any data item is
assumed to have one or more update (Uij) processes associated with it at other sites.

Figure 2: Distributed Database Environment



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 369

In particular, a cohort will have an update process at each remote site that stores a copy of the
data items that it updates. It communicates with its update processes for concurrency control
purposes, and it also sends them copies of the relevant updates during the first phase of the commit
protocol. When a cohort finishes its portion of a query, it sends an execution complete message to
the master. When the master has received such a message from each cohort, it will initiate the commit
protocol by sending prepare to commit protocol by sending prepare to commit messages to all sites.
Assuming that a cohort wishes to commit, it sends a ‘prepare’ message back to the master, and the
master will send commit messages to each cohort after receiving prepared messages from all cohorts.
The protocol ends with the master receiving ‘committed’ messages from each of the cohorts. If any
cohorts are unable to commit it will return a cannot commit message instead of a ‘prepared’ message
in the first phase causing the master to send ‘abort’ instead of ‘commit’ messages in the second phase
of the protocol. When replica update processes are present, the commit protocol becomes a nested
two-phase commit protocol.

4. RELATED RESEARCH
Several concurrency control techniques have been proposed, based on different types of schedulers.
A scheduler can be conservative or aggressive or a combination of the two. A conservative or a
combination of the two. A conservative scheduler delays operation until it is certain that there will be
no conflicting operation that is due to arrive. Therefore, conservative techniques suffer from a lost
opportunity cost. An aggressive scheduler reduces unnecessary delay by scheduling operations
immediately. However, it runs the risk of having to reject operations later, thereby causing the issuing
transaction to abort and restart.

Traditionally, concurrency control techniques have been classified into four categories – locking,
timestamp ordering, optimistic, and hybrid (Rashmi, 2002; Thomasian, 1998; Yu, Wu, Lin and Son,
1994). In this paper, we will consider some of the schemes under each of the categories and their
associated problems. Concurrency control techniques in distributed databases have been analytically
studied, but these analytical studies make restrictive assumptions (Gray and Reuter, 1992). Existing
analytical models for Two-Phase Locking (2PL) in a distributed database do not permit simultaneous
processing of a transaction at multiple sites (Gray et al, 1992). Basic Timestamp ordering techniques
have also been analyzed in Sheikh and Woodside (1997). It was reported in Carey and Linvy (1991)
that BTO performed worse than 2PL in a distributed database, especially in a low data contention
scenario. In the case of Wound-Wait (WW), deadlocks are prevented via the use of timestamps.
According to Rashmi (2002), each transaction is numbered according to its initial startup time, and
younger transactions are prevented from making older transactions wait. If an older transaction

Figure 3: Distributed Transaction Structure



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005370

requests a lock, and if the request would lead to the older transaction waiting for a younger transaction,
the younger one is ‘wounded’ – it is restarted unless it is already in the second phase of its commit
protocol. A major drawback of WW avoidance scheme is that the request for a data item held by
another transaction does not imply a deadlock. It therefore incurs the associated message costs. Also,
the abort and rollback may not be necessary. In the case of Distributed Certificate (OPT), it always
uses restarts to handle conflicts, checking for problems only when a transaction is ready to commit.
This means that it defers communication between cohorts and updates until commit time.
Piggybacking its concurrency control information on the message of the commit protocol can be
lethal. Finally, few of the available hybrid schemes for concurrency control are discussed (Rashmi,
2002; Halici and Dogac, 1991; Yu and Dias, 1992). A distributed optimistic 2PL scheduler executes
transactions optimistically, but if a transaction is aborted, the scheduler uses 2PL to execute the
transaction a second time. We also have optimistic with dummy locks, hybrid optimistic concurrency
control and broadcast optimistic concurrency control. All these hybrid schemes are not suitable for
high conflict data items. Even in Halici et al (1991), the concurrency control protocol is locally
pessimistic and uses locking. However, actual propagation of locks and updates to sites not
participating in the execution of the transaction is delayed until the transaction commits. Thus, the
commits take place in an optimistic fashion; with inter-site read/write conflicts detected only at
commit time. However, the model in this research effort is different in that there is no partitioning of
transactions into pessimistic or optimistic classes; rather each transaction is potentially a hybrid
transaction. Furthermore, the transactions do not control the set of data items, which are optimistic.

5. SYSTEM MODEL
In this section, a hybrid technique that provides locking for high conflict data items and optimistic
access for the rest is explored. While hybrid techniques have been proposed in earlier literature,
especially in Halici et al (1991), this technique is unique in that it is self-tuning and does not require
the transaction manager, the transaction or the user to incorporate any additional knowledge or to
specify which data items or transactions are optimistic. Rather, the system uses a data structure called
lock buffer to maintain an optimal level of locks in the system. This data structure enhances the
performance of the basic optimistic model by automatically providing locking for highly conflict
prone data. A unique feature of the algorithm formulated in this model, is that locks may be evicted
from the lock buffer, if the number of data items for which locks are requested exceeds the size of
the lock buffer. All transactions affected by such an eviction of locks automatically ‘become’
optimistic with respect to the evicted data items.

The design of the lock manager is the key to this hybrid technique. The lock manager maintains
a finite lock buffer. Each slot (or frame) in the lock buffer holds locks and pending lock requests for
a single data item. Thus, the number of data items with active lock requests cannot exceed the
number of slots in the buffer. Whenever a lock request for a data item x is received by the lock
manager, the lock manager first attempts to locate x in the lock buffer. If it is found the lock manager
attempts to post the lock in the corresponding slot. The lock request can either be granted or be
blocked in the same fashion as pure locking depending on the status of existing locks on x. Thus, a
read (shared) lock would be granted if and only if there is no existing exclusive lock on x. A write
(exclusive) lock would be granted if and only if there are no existing locks on x. If the lock is granted
the transaction now holds or owns a lock on x. If x is not located in the lock buffer, a slot must be
located for posting the lock request. If a free slot exists, it will be used; otherwise a victim slot must
be selected. Note that any slot with no locks or pending lock requests is considered free. 

If the size of the lock buffer is zero, then all the lock requests get rejected and there are never any



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 371

active locks. In this scenario all transactions become optimistic with respect to all the data items in
their read and write sets, and the system becomes purely optimistic. On the other hand, if the number
of slots is greater than or equal to the number of data items in the database, then each lock request
can be granted without evicting any existing data items and locks. 

On commit, the transaction must be validated. For a transaction to be valid, it must be valid with
respect to all of the data items in its read and write sets. A transaction T is valid with respect to a data
item x if one of the following three conditions hold (a concurrent transaction T’ to T is one whose
execution overlaps T; i.e. either T’ started after T but before T entered its validate phase or T started
after T’ but before T’ entered its validate phase):

1. T holds a lock on x (i.e. the lock acquired by T on x was not evicted).
2. x is not in the writeset of T, T does not hold a lock on x and both of the following conditions hold:

a) if another transaction T’ holds a lock on x then it is not an exclusive lock
b) x was not overwritten after it was read by T (i.e. x is not in the writeset of any concurrent

committed transaction).
3. x is in the writeset of T, T does not hold a lock on x and both of the following conditions hold:

a) No other transaction holds a lock on x (either shared or exclusive).
b) x was not overwritten after it was “read” by T (i.e. x is not in the writeset of any concurrent

committed transaction).

After validation succeeds, the transaction’s writeset is written to the database and all locks held by
the transaction are released. These conditions are incorporated into Algorithm 1, which is the validation
algorithm. For a transaction T, READSET(T) is the set of data items read by T, WRITESET(T) is the set
of data items written by T and LOCKSET(T) is the set of all data items that T owns locks for.

Ensure: // Inputs: Transaction T
1: // Main Loop:
2: for all x ∈ READSET(T) do
3: if x ∉ LOCKSET(T) then
4: if x ∉ WRITESET(T) Λ ∃T’ : x ∈ WLOCKSET(T’) then
5: Abort T
6: return
7: end if
8: if x ∈ WRITESET(T) Λ ∃T’ : x ∈ LOCKSET(T’) then
9: Abort T
10:   return
11:  end if
12:  if ∃committed T’ concurrent to T: x ∈ WRITESET (T’) the
13: Abort T
14: return
15:  end if
16: end if
17: end for
18: Commit T
19: END

Algorithm 1: Validation Algorithm 



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005372

5.1 Components of the Model 
We model a distributed database as a collection of data items (tuples). A tuple can be used to
represent a relation, or it can represent a partition of a relation in a system where relations are
partitioned across multiple sites. Tuples are assumed to be the unit of data replication. Figure 4 shows
the structure of our model while Figure 5 shows the sub-systems of the model. Table 1 summarizes
the parameters of the database model, which include the number of sites and tuples in the database
and the sizes of the files. The mapping of tuples to sites is specified via the parameter tuple locations,
a boolean array in which TupleLocationsij is true if a copy of data items i resides at site j. The basic
components of the model are discussed below:

• Transaction Manager: this module provides all the functionality of a transaction manager for each
transaction, including handling of lock requests, page requests, deadlock management, and the
read, validation and write phases of transactions. These functions are executed by the CPUs.
Deadlocks are managed using deadlock avoidance. The transaction manager is responsible for
accepting transactions and modeling their execution. To choose the execution sites for a
transaction’s cohorts, the decision rule is: If a tuple is present at the originating site, use the copy
there; otherwise, choose uniformly from among the sites that have remote copies of the tuple. If
the tuple is replicated, the transaction manager will initiate updaters at sites of other copies when
the cohort accessing the file first needs to interact with them for concurrency control reasons. The
transaction manager also models the details of the commit and abort protocols.

• Concurrency Control Manager: This module manages the Lock Buffer, handles lock and unlocks
requests along with functionality to evict data items from the lock buffer, and performs validation
phase of transactions.

Figure 4: Optimistic Locking Model Structure



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 373

• Data Manager: The DM executes each read and write operation it receives. The data manager
simulates the physical database storage manager. Each node has a data manager, which operates
independently of the other data managers in the system. We have used a very simple model,
where the data manager only consists of a simulated buffer cache and a disk. Time delays are used
to simulate operations against the data manager. The time needed to execute a disk operation is
the sum of the time that operation has to wait for the disk to become idle (the time needed to
execute previous operations submitted to the disk), and the time it takes to read or write the page.
We have chosen a very simple algorithm for disk scheduling: first-come-first-served (or first-in-
first-out). A read operation from the cache takes constant time, and can be served immediately.

Figure 5: Sub-systems of the Optimistic Locking Model

Parameter Description Value

NumSites Number of sites in the DDBS 8 sites

NumTuples Number of tuples in the relation. 100000 per site

TuplesPerPage Number of tuples in a page 10 pages per tuple 

NumDisks Number of disks 10 per site

BufferSize Number of frames in the buffer pool 1000 per site

QueueLen Minimum length of the pending queue 0.1 – 1.0

ProbWrite Probability of a transaction being read-write 0.1 – 1.0

TransactionSize Average number of tuples accessed by a transaction 1000 – 10000

ProbReqWrite Probability of a tuple accessed by a read-write transaction 
being a write 0.1 – 1.0

NumCPU Number of CPUs 10 CPUs per site

DegMulti Maximum degree of multitasking on each CPU 10

LockBufferSize Size of the lock buffer 0 – 100000

TimePerTuple Time for processing a tuple 10 milliseconds

Table 1: Parameters used in the Model and their values



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005374

5.2 Correctness
The correctness of Algorithm 1 is sketched in this section. The full proof requires a consideration of
all lock/operation conflicts. The notation used by Bernstein, Hadzilacos and Goodman (1987) is also
used here.

To prove correctness of this algorithm, there is the need to show that all histories produced by the
algorithm are serializable. Suppose H is a history produced by the algorithm, and SG(H) is the
corresponding serializability graph. By the serializability theorem (Bernstein et al, 1987), H is
serializable if and only if SG(H) is acyclic.

Suppose Ti and Tj are transactions in H and Ti → Tj is an edge in SG(H). Thus there must exist a
pair of conflicting operations on some data item x, pi (x) in Ti and qj (x) in Tj such that pi(x) < qj (x) (i.e.
pi (x) occurred before qj (x)). For the operations to be conflicting, either pi (x) or qj (x) or both must
be writes. We claim that Ti must have committed before Tj (note that commits are atomic). Suppose
instead that Tj committed before Ti. There are two (non mutually exclusive) cases:

1. qj (x) is a write. For Tj to commit, Ti may not own a lock on x. If it does then by applying rule 2a
or 3a, we must abort Tj, contradicting our assumption that Tj committed. Now suppose Tj
commits writing x. Then we must abort Ti by either one of rule 2b or 3b since the data item x was
overwritten since it was accessed by Ti (note that writes are always treated as reads followed by
writes in our model). This is also a contradiction.

2. pi (x) is a write. The only interesting case here is if Ti owns an exclusive lock on x. If not, the
write to x is not scheduled until Ti commits, which implies that qj (x) < pi (x) (since Tj committed
before Ti) contradicting our assumption. However, if Ti owns an exclusive lock on x (which in
turn implies that Tj does not own a lock on x), then by rule 2a or 3a, Tj must be aborted,
contradicting our assumptions.

Thus, Ti must commit before Tj. Then, if there is a cycle in SG(H) each transaction in the cycle
committed before itself, which is a contradiction. Thus, SG(H) is acyclic and H is serializable, as
required.

5.3 Operations of the Model
The distributed database is a single relation consisting of NumTuples tuples. The relation is stored
on disk as a set of pages, each page consisting of TuplesPerPage tuples. The pages in turn are striped
across NumDisks disks. All page accesses go through the Data manager, which manages writeback
buffer cache consisting of BufferSize slots. Each slot can hold a single page.

Transactions are generated at maximum rate as follows: a “pending” queue of transactions
waiting to be scheduled is maintained by the transaction manager, and every time the number of
transactions in this queue drops below a threshold QueueLen, new transactions are created. Thus the
system receives transactions at the maximum possible rate. 

A set of tuples in the form of I/O requests is generated for each transaction. A transaction is
readwrite (i.e. an update transaction) with the probability ProbWrite, otherwise it is read-only (i.e. it
is a query transaction). The number of requests is uniformly distributed with an average of
TransactionSize. For a read-write transaction a request is a write with probability ProbReqWrite.

The transactions are sent to the transaction manager after being created. The transaction manager
attempts to schedule the transaction on one of the NumCPUs CPUs in the system. Each CPU can
multi-task at most DegMulti transactions (including blocked transactions). Transactions that cannot
be scheduled are held in a pending queue awaiting a free CPU.

On being scheduled, a transaction starts its read phase. In this phase, locks are acquired for each



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 375

I/O request. However, only the read requests are actually passed to the buffer manager, while all write
requests are held pending the write phase. Locking is performed in a recoverable 2-phase manner.
Thus, all locks are acquired right before the requests are scheduled, but are not released till the end
of the write phase.

At the end of the read phase, the transaction enters an atomic validation phase. For each tuple in
the readset and writeset of the transaction the concurrency control manager checks if one of the
conditions in Section 5 holds. If the transaction is valid with respect to all the tuples it accessed, the
transaction enters a write phase where all pending writes are written to disk. 

All the locks are managed by the concurrency control manager using a lock buffer of
LockBufferSize tuples. The concurrency control manager is also responsible for blocking trans-
actions whenever locks cannot be granted, and for unblocking them whenever either the lock is
granted or the corresponding tuple is evicted from the lock buffer.

6. SYSTEM SIMULATION AND RESULTS ANALYSIS
In this section, we carried out a simulation of the developed model using MATLAB 6.5 and
SIMULINK 4.1 with the following simulation parameters: 

• TransactionSize (|T|): TransactionSize is the average number of tuples accessed by a transaction.
The value of the TransactionSize was varied between 0 and 5000.

• Lock Buffer Size: The lock buffer size is the size of the lock buffer. The value of the Lock Buffer
Size is varied between 0 and 10000.

• Time per Tuple: Time for processing each tuple. This value is measured in 10milliseconds.
• Probability of Write (Pt) :This is the probability of a transaction being read-write. This value is

varied between 0.1 and 0.5 
• Probability of Required Write (Pw): Probability of a tuple accessed by a read-write transaction

being a write. This value is varied between 0.1, 0.5 and 1.0.

6.1 Analysis of Simulation Parameters
The values of all the parameters that were used for the simulation are given in Table 1. The simulation
was conducted on two broad classes of runs. For the first class, TransactionSize was set to 1000 (i.e.
1% of the database size) and ProbWrite was set to 0:1 and 0:5 (i.e. 10% and 50% of the transactions
were read-write), and ProbReqWrite was set to 0:1, 0:5 and 1:0 (i.e. 10%, 50% and 100% of the
tuples accessed by the read write transactions were written to). This gives us 6 sets of results. For the
second class of runs, both ProbWrite and ProbReqWrite are fixed to 0:1 and TransactionSize varied
from 1000 to 5000 (i.e. between 1% and 5% of the database size). This gives another 2 sets of results
(one each for 1000, 2500, 5000). For the results presented here the transactions were generated at
maximum rate as described earlier. The experiments were conducted with different transaction inter-
arrival rates, which have not been presented here.

The experiment was conducted using a series of runs with different lock buffer sizes.
Significant results are summarized in Figures 6 through 13. In each case the independent parameter
is the lock buffer size scaled down by a factor of 1000. These results are subject to a maximum
variation of less than 2:3%. For the purpose of graphing, we denote ProbWriteby Pt, ProbReqWriteby
Pw and TransactionSize by |T|.

6.2 Analysis of Results
In this section, the authors present the analysis of the results obtained from the simulation. The
following observations were discovered:



Figure 6: Throughput (Completed Transactions/Second)
Pt = 0.1, |T| = 1000

Figure 7: Time per Tuple (/10mns),
Pt = 0.1, |T| = 1000

Figure 8: Throughput (Completed Transactions/Sec)
Pt = 0.5, |T| = 1000

Figure 9: Time per Tuple (/10mns),
Pt = 0.5, |T| = 1000

6.2.1 Degree of Pessimism/Optimism of the System
Figures 12 and 13 are crucial for determining the degree of pessimism in the system. The slot eviction
rate as well as the fraction of locks rejected is essentially measuring the same aspect of the system:
how many data items ‘became’ optimistic. The slot eviction rate measures the rate at which data
items become optimistic, whereas the fraction of locks rejected measures the absolute magnitude of
locks rejected. Note that eviction of a slot may result in eviction of one or more locks. This could
happen either if there are blocked lock requests or multiple granted locks. Thus the slot eviction rate
is not a good measure of the absolute magnitude of the locks rejected.

As the number of locks rejected approaches one, the system becomes more and more optimistic. At
unity, the system is fully optimistic. Furthermore, as the fraction of locks rejected approaches zero, the
system becomes more and more pessimistic. When this number becomes zero, the system is fully
pessimistic and follows two phase locking (2PL). It might appear in the graphs that lock eviction rate
reaches zero before the lock rejection rate. This is merely an artifact of the precision of the graphs.

In each of these graphs, the system becomes fully pessimistic even though the size of the lock
buffer is less than the size of the database. After this point, increasing the size of the lock buffer does

Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005376



Figure 10: Throughput (Completed Transactions/Sec)
Pw = 0.1,

Figure 11: Time per Tuple (/10mns),
Pw = 0.1, Pt = 0.1

Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 377

not affect any of the observations. Thus, the x-axis of each graph is truncated at this point. Also note
that for purely optimism (i.e. lock buffer size of 0), we do not report either lock rejection or slot
eviction rate. Thus, for these graphs the x-axis starts at 1 and not 0. This again is an artifact of our
simulation, which for efficiency reasons bypasses the lock buffer subsystem for purely optimistic
accesses. Since the lock buffer subsystem maintains the statistics for rejection rates, it is currently not
possible to gather these statistics for a purely optimistic system.

6.2.2 Measure of the Lock Buffer Performance 
Figures 6, 8 and 10 each shows a spike in performance between lock buffer sizes of 1000 and 10000
(i.e. 1% to 10% of the database size). These spikes show a throughput increase of up to 4 to 5 times
for low conflict rates. As expected spikes become less pronounced with increasing conflict rates (i.e.
increasing probability of a write). Thus, we conclude lock buffers enhance performance as long as
conflict rates are low. On the other hand Figures 7, 9, and 11, shows that as the lock buffer size
increases the time per tuple access increases. We can see that as the system becomes more pessimistic
the response time increases. The initial improvement in performance is thus obtained at the cost of
increased response time.

Figure 12: Fraction of Locks Rejected
Pt = 0.1, |T| = 1000

Figure 13: Rate of Slots Evicted (per 10mns),
Pt = 0.1, |T| = 1000



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005378

For our choice of parameters, pure optimism wins over pure pessimism. However, other
experiments we have conducted indicate that for larger transaction sizes and larger write probabilities
this is not true. Moreover, under those circumstances lock buffers usually end up performing worse
than either pure pessimism or optimism. A hint of this behaviour can be seen in Figures 6 and 11
where dips can be seen in the throughput figures after optimal lock buffer size is reached. This can
be explained as follows: our system forces each transaction to first be subjected to the overheads of
locking and then to the overheads of being optimistically rolled back. If the lock buffer is not so large
more transactions get blocked waiting for locks and are then optimistically rejected. The time spent
blocked increases the collision cross section of the transaction subjecting it to more optimistic
invalidations. However, after a point when the lock buffer is large enough, the number of optimistic
invalidations drops, hence restoring throughput. This shows that the lock buffer must be carefully
tuned to achieve optimal performance. However, the dip is only seen when the lock buffer size is
roughly twice the optimal size, giving a system designer enough flexibility in designing the system.

6.2.3 Measure of Throughput using varied Transaction Sizes
Figure 11 shows our results for varying transaction sizes with both ProbWrite and ProbReqWriteset
to 0:1. The results mimic the first set of graphs with ProbWriteset to 0.1 and ProbReqWriteset to 0.1.
As expected, the performance is best for small transaction sizes. Note that smaller transactions have
smaller collision cross sections, where the number of locks rejected per slot buffer size drops more
rapidly for smaller transaction sizes. Also note that for transactions of size greater than 5000, the
system becomes pessimistic only when the lock buffer size is equal to database size. For transaction
sizes of 1000, 2500 and 5000 the system reaches optimal throughput when the lock buffer size is
5000 (i.e. 5% of the database size). 

6.2.4 Observed Anomalous Behaviour of the System
The only anomalous behaviour seems to be present in Figure 11. In that figure, the graph for
transaction size 2500 shows extremely high access time per tuple. This is the only graph that shows
such a significant increase. This behaviour was spotted only after the access times were scaled down
by the transaction sizes. This behaviour is yet to be accounted for. However, our other experiments
indicated that this behaviour is consistent even when we increase the probability of a read-write
transaction and probability of a write request.

7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, we have described the analysis of an enhanced optimistic locking model for
concurrency control in a distributed database system. In particular, this technique enhances the basic
optimistic concurrency model by using locks for high conflict data items. It would be particularly
useful in systems that have a few data items that are prone to high rates of conflict. As the empirical
results demonstrate, the performance of optimistic concurrency control techniques can be
significantly improved by using a relatively small lock buffer. Thus the hybrid technique achieves
our goals of improving the performance of optimistic concurrency control and in many cases it also
performs better than 2PL. 

In future, we will investigate some of the other characteristics of distributed database
systems, other than concurrency, like replication and fault-tolerance. We will also explore other types
of distributed database systems like Real-Time and Object-Oriented database systems. Finally, we
will consider lock buffer tuning as we assumed a fixed size lock buffer in this paper. 



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005 379

REFERENCES
BELL, D. and GRIMSON, J. (1992): Distributed database systems. Addison-Wesley, Workingham.
BERNSTEIN, P., HADZILACOS, V. and GOODMAN, N. (1987): Concurrency control and recovery in database systems.

Addison-Wesley.
CAREY, M.J. and LINVY, M. (1991): Conflict detection trades for replicated data. ACM Transactions on database systems,

16, (4): 703–746.
DATE, C.J. (1991): An introduction to database systems. Addison Wesley. Reading, Fifth Edition.
ELMASRI, R. and NAVATHE, S. (2000): Fundamentals of database systems. Benjamin/Cummings, Third Edition.
GRAY, J.N. and REUTE, A. (1992): Transaction processing: concepts and facilities, Morgan-Kaufmann.
HALICI, U. and DOGAC, A. (1991): An optimistic locking technique for concurrency control in distributed databases. IEEE

Transactions on Software Engineering, 17 (7): 712–724.
IMIELINSKI, T. and BADRINATH, B.R. (1994): Mobile wireless computing: Challenges in data management. Technical

Report DCS-TR, Department of Computer Science, Rutgers University.
KOHLER, W. and JENG, B. (1985): Performance evaluation of integrated concurrency control and recovery algorithm using

a distributed transaction processing testbed. Technical Report No. CS-85-133, Department of Electronics and Computer
Engineering, University of Massachusetts, Amherst.

NICOLA, M. and JARKE, M. (2000): Performance modeling of distributed and replicated databases. IEEE Transactions on
Knowledge and Data Engineering, 12(4): 645–672.

NORVAG, K., SANDSTA, O. and BRATBERGSENGEN, K. (1997): Concurrency control in distributed object-oriented
database systems. Proceeding of the first East-European Symposium on Advances in Databases and Information
Systems, St. – Petersbury, Russia, (1)

OZSU, M.T and VALDURIEZ, P. (1991): Principle of distributed database systems, Prentice-Hall, Englewood Cliffs, NJ.
RASHMI, S. (2002): Network – Aided concurrency control in a distributed database. PhD. Dissertation, Faculty of School of

Engineering and Applied Science, University of Virginia.
SHEIKH, F. and WOODSIDE, C.M. (1997): Layered analytic performance modeling of a distributed database system.

Proceedings of International Conference on Distributed Computer Systems, 482–490.
THOMASIAN, A. (1998): Concurrency control: Methods performance, and analysis. ACM Computing Surveys, 30 (1): 70–119.
YU, P. and DIAS, D. (1992): Analysis of hybrid concurrency control schemes for a high data contention environment. IEEE

Transactions on Software Engineering, 18 (2): 118–129.
YU, P., WU, K., LIN, K. and SON, S. (1994): On real–time databases: Concurrency control and Scheduling, Proceedings of

the IEEE, 82(1): 140–157.

BIOGRAPHICAL NOTES
G.A. Aderounmu holds a research degree MSc and PhD in Computer Science
from Obafemi Awolowo University, Ile-Ife, Nigeria (1997 and 2001,
respectively).  He is a member of the Nigerian Society of Engineers (NSE) and
is also a registered computer engineer with Council for the Regulation of
Engineering Practice in Nigeria (COREN). He is also a Member of the
Nigerian Computer Society (NCS) and Computer Professional Registration
Council of Nigeria (CPN). He has over 12 years of experience in teaching and
research. He is an author of many journal articles in Nigeria and abroad. His
special interests include engineering education in Nigeria, curriculum
development, and computer communication and network. He is a Visiting
Research Fellow to the University of Zululand, Republic of South Africa. He is
currently a Senior Lecturer and the Acting Head of the Department of
Computer Science and Engineering at the same university.

A.A. Akintola obtained his Bachelors and Masters degrees in Computer
Engineering and Computer Science from Obafemi Awolowo University, Ile-Ife,
in 1994 and 2002, respectively.  He is a registered computer engineer with the
Council for the Regulation of Engineering Practice in Nigeria (COREN) and
also a member of Nigerian Society of Engineers (NSE). He is an author of many
journal articles in Nigeria and abroad. His current research interests are in the
areas of teletraffic engineering, mobile/nomadic computing, digital computer

G.A. Aderounmu

A.A. Akintola



Performance Modeling of an Enhanced Optimistic Locking Architecture for Concurrency Control

Journal of Research and Practice in Information Technology, Vol. 37, No. 4, November 2005380

networks, hardware system studies, and computer modeling and simulation of
streaming video. He is also into the areas of wireless IP networks, error control,
and curriculum development.  He has over 7 years of experience in teaching and
research.  He is currently a PhD student and a lecturer at the Department of
Computer Science and Engineering at the same university.

A.U. Osakwe obtained her Bachelor of Science degree in Computer
Engineering from Obafemi Awolowo University, Ile-Ife, in 2003. She is a
student member of the Nigerian Society of Engineers (NSE). Her current
research interests are in the areas of computer communications and
distributed systems. She is also into teletraffic engineering and wireless
communications. Miss Osakwe is currently on National Youth Service.

M. O. Adigun holds a research degree PhD in Computer Science from
Obafemi Awolowo University, Ile-Ife, Nigeria which he obtained in 1989.
Currently,  he is a Professor and Head, Department of Computer Science,
University of Zululand, Republic of South Africa. He is an author of many
journal articles in Nigeria and abroad. His research interests include Software
Engineering, Mobile Computing, Modeling and Simulation, and Performance
Analysis of Computer Systems.

A.U. Osakwe

M.O. Adigun

View publication statsView publication stats

https://www.researchgate.net/publication/228989852


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


