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HOLD EFFECT IN FINITE TORSION OF A COMPRESSIBLE
ELASTIC TUBE

A. P. AKINOLA∗, O. P. LAYENI, O. A. ODEJOBI AND L. E. UMORU

Abstract. We consider the application of complex variable method to
elastic problem and investigate the nonlinear effect of finite torsion of a
compressible elastic composite layer. We obtain that as a result of finite
deformation approach, a tube subjected to torsion decreases in radius giv-
ing rise to a “hold effect”.

AMS Mathematics Subject Classification: 73G05, 73C50.
Key words and phrases : Finite Deformation, composite layer, anisotropic
expansion, nonlinear effect, Cauchy-Riemann equations, analytical solu-
tion.

1. Introduction

Most nonlinear effects in solid mechanics are observed when specimens work
in shears. For an instance, materials fore and foremost get into plastic regime
under shear. Torsion is one such regime when materials work in shear. (i.e.,
shear regime is attained when a specimen is subjected to torsion).

It is not accidental therefore that most experiments carried out to establish
(or track down) nonlinear phenomena in tubes and rods are carried out under
torsion. Such is the case with most pioneering experiments of Wertheim G.
about 1857 and Bauschinger J. about 1881 and the theoretical works of Cauchy
and Saint Venants betweeen 1853 and 1856 [1].

The application of complex variable method to problems enjoys a sustained
interest in continuum mechanics, including in plane problems of elasticity [2].
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This is particularly so, when analytical solutions are desirable. The theoreti-
cal formulation of equilibrium problems of finite elasticity, involving a layered
medium, is well exposed in an earlier work [3]; it will be highlighted here for self
containment.

In this work, we examine the equilibrium problem of a tube, made up of
concentric cylinders of different elastic materials, when subjected to torsion. We
make use of the theory of complex variable method, developed for the case of
finite elasticity [3, 4, 5], and investigate the nonlinear effect of finite deformation
of the compressible elastic composite tube.

Problem Setting

Statement of problem: Let Ω be a layer of concentric cylinders, each of
which is compressible and of different elastic properties, in a three dimensional
euclidean space E3. i.e., Ω ⊂ E3 and Ω = ∪Ωm, m = 1, 2, 3 . . . , n, where n is
any natural number.

We assume ideal contact between these cylindrical layers and consider the
finite deformation of the whole layer, from the initial configuration Ωo into a
current configuration, denoted by Ω. The position vector of particles in the
initial and current configurations respectively is given as

X = X1e1 +X2e2 +X3e3 = ReR + Zk (1.1)
and

x = x1e1 + x2e2 + x3e3 = r(R)er + zk , (1.2)
where X i and xi, i = 1, 2, 3 are the rectilinear coordinates with common base
vectors ei in Ωo and Ω respectively; eR,k and er,k are base vectors in the
corresponding material cylindrical coordinates R,Φ, Z and r, ψ, z.

The deformation in consideration is given as

r = r(R), ψ(R) = ϕ+ θ(R), z = Z (1.3)

with the boundary conditions

r(R1) = R1, r(R2) = R2; θ(R1) = α, θ(R2) = 0. (1.4)

That is, we are interested in the torsion of a cylindrical layer having a cross-
section R1 ≤ R ≤ R2, 0 ≤ Φ ≤ 2π in the reference configuration. What is its
cross section in the current configuration?

2. General geometry of deformation

We observe that for a sufficiently long cylindrical layer, this transformation
is essentially a plane deformation of Ωo into Ω [5,6].
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Let Ω be a transversely isotropic medium in three dimensional euclidean space
E3. We look at the equilibrium state of Ω in plane finite deformation.

The deformation of Ω is given by specifying [7] the position vector X of a
particle prior to deformation in the initial (or reference) configuration Ωo with
the boundary Σo and its orientation outward normal unit vector N and the
position vector x in the current configuration Ω with the boundary Σ and its
orientation normal vector n :

X = X1e1 +X2e2 +X3e3 (2.1)

x = x1e1 + x2e2 + x3e3 (2.2)

such that for plane deformation:

xα = xα(X1, X2); x3 = kX3; α = 1, 2 , (2.3)

where Xm, xm are the material coordinates in Ωo and Ω respectively; em is the
orthonormal basis; m = 1, 2, 3; k is any real constant.

Let the geometry of deformations be the tensor-gradient of the position vector
x in Ω(x) taking in the initial configuration Ωo(X) [7]. That is, applying the

operator of gradient-vector in the reference configuration,
o

∇≡ ei
∂

∂Xi , on the
position vector x in the current configuration, we obtain the tensor-gradient (or

deformation gradient),
o

∇x ≡ F :

F = eαeβ
∂xβ

∂Xα
+ ke3e3. (2.4)

We also consider the deformative rotation tensor of the medium:

R = V−1F = I cosχ+ (1 − cosχ)e3 ⊗ e3 − e3 × I sinχ , (2.5)

where V, such that V2 = FFT , is the symmetric left stretch tensor, arising from
the polar decomposition of the deformation gradient, F = VR; I = δijei ⊗ ej is
the unit tensor in E3 and

cosχ =
1
q

(
∂x1

∂X1
+
∂x2

∂X2

)
, sinχ =

1
q

(
∂x2

∂X1
− ∂x1

∂X2

)
,

q =

√(
∂x1

∂X1
+
∂x2

∂X2

)2

+
(
∂x2

∂X1
− ∂x1

∂X2

)2

. (2.6)

For any vector functions φ and ψ, here and elsewhere, we denote their dot
product, tensor product and cross product respectively by φψ (or φ·ψ), φ⊗ψ and
φ×ψ. Also, for the tensor functions Φ and Ψ we denote their dot product, cross
product and double dot product respectively as ΦΨ, Φ×Ψ and Φ··Ψ = tr(ΦΨ).

Static equation for transversely isotropic material
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We look at the equilibrium state of Ω in plane finite deformation. For this,
we first recall the energy function for an isotropic semi-linear material in finite
deformation, proposed by F. John 1960 [3, 5]:

W = µS2 + 1/2λS2
1 , (2.7)

where S1 and S2 are the invariants of the deformation geometry,

S1 = I · ·(V − I) = tr(V − I) ≡ I1(V − I), S2 = I1(V − I)2.

λ and µ are the Lame constants.
On the basis of (2.7) an energy function has been constructed for a trans-

versely isotropic semi-linear material in the case of plane deformation [3]:

W = λ2S2 + 1/2λ1S
2
1 + λ0S0 (2.8)

where, S0 = c ·V2 ·c is an additional invariant of deformation, due to anisotropy.
c is the unit vector characterising the direction of anisotropy. λ0, λ1, λ2 are
the material constants. In the case of randomly unidirectional fibre reinforced
composite or a lamina composite the material constants are the effective moduli
[3]:

λ2 = 〈µ〉, λ1 = 〈λ〉 +
〈 λ
(λ+2µ) 〉

2

〈 1
(λ+2µ) 〉

−
〈 λ2

(λ+ 2µ)

〉
, λ3 =

1
〈 1

µ 〉
, λo = λo(λ2, λ3)

(2.9)
and we note that in the case of degeneracy into isotropy, the energy function
(2.8) automatically reduces to the energy (2.7) and accordingly for the effective
moduli λ3, λ2, λ1, while λo = 2(λ3 − λ2) vanishes, i.e.

λ3 = λ2 = µ, λ1 = λ, λo = 0. (2.9)′

For any finite function ϕ(~ξ, t) ∈ Ω × [0, T ), 〈ϕ〉 denotes its geometric average
over Ω with the volume |Ω| : 〈ϕ〉 = 1

|Ω|
∫
Ω
ϕdΩ.

Now, invoking the hypothesis of hyperelasticity of Cauchy, we take the Frechet
derivative [5,8] of the energy with respect to the geometry of deformation (the
deformation gradient) F and obtain the first Piola-Kirchoff stress tensor TR, to
which it is energy conjugate:

TR ≡ ∂W

∂F
= 2λ2F + (λ1S1 − 2λ2)R + 2λ0cc ·F . (2.10)

In the absence of body force, we obtain the static equation and the accompa-
nying boundary condition:

o

∇·TR = 0
fdΣ = N · TRdΣo,
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where dΣ is the element of the boundary in the current configuration on which
the force f acts while dΣo is the element of the boundary in the reference con-
figuration, with the normal vector N = (N1, N2).

The component form of these relations are:

∂T 11
R

∂X1
+
∂T 21

R

∂X2
= 0;

∂T 12
R

∂X1
+
∂T 22

R

∂X3
= 0;

∂T 33
R

∂X3
= 0 (2.11)

and

f1
dΣ
dΣo

= N1T
11
R +N2T

21
R ; f2

dΣ
dΣo

= N1T
12
R +N2T

22
R . (2.11)′

3. Complex variable formulation

Complex variable representation of static equation

We now look at Ω as a subspace of the complex plane C, such that henceforth
Ω −→ Σ,Ωo −→ Σo; Σ −→ s,Σo −→ S.

In place of the material coordinates X1, X2 and x1, x2 we introduce the com-
plex variables:

Z = X1 + iX2 ∈ Σo and z = x1 + ix2 ∈ Ω (3.1)

where, i =
√
−1 is the imaginary unit. Then
∂

∂Z
=

1
2

(
∂

∂X1
− i

∂

∂X2

)
;

∂

∂Z
=

1
2

(
∂

∂X1
+ i

∂

∂X2

)
(3.2)

and

2
∂z

∂Z
=

(
∂x1

∂X1
+
∂x2

∂X2

)
+ i

(
∂x2

∂X1
− ∂x1

∂X2

)

or, in view of (2.6)

∂z

∂Z
=

1
2
q exp (iχ) and exp (iχ) =

∂z

∂Z

/∣∣∣∣
∂z

∂Z

∣∣∣∣. (3.3)

The Piola-Kirchoff stress tensor (2.10), the static equations (2.11) and the
boundary conditions (2.11)′ respectively become:

T 11
R + iT 12

R = φ(q)exp (iχ) + 2iλ2
∂z

∂X2
+ 2λo

(
q exp (iχ) + i

∂z

∂X2

)
,

T 22
R − iT 21

R = φ(q)exp (iχ) − 2λ2
∂z

∂X1
, (3.4)

P 33 = P 33(a1, X2);
∂Φ(Z)
∂Z

= −2λ0
∂2z

∂X1∂X1
(3.5)
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and

if
ds

dS
− dZ

dS
Φ(Z) + 4λ2

dz

dS
= 2λ0

∂z

∂X1
in1, (3.5)′

where N = N1+iN2; ds and dS are the arc elements in the current and reference
configurations respectively, and

Φ(Z, Z̄) ≡ φ(q)exp (iχ); φ(q) = (λ1 + 2λ2)(q − 2) + 2λ2 + λ1(k − 1) . (3.6)

φ(q) = (λ1 + 2λ2)
[
q − 1 − νo(k − 1)

1 − νo

]
; νo ≡ λ1

2(λ1 + λ2)
. (3.6)′

Anisotropic expansion of state variables

We note that if Ω were to be an isotropic body, then the right-hand side
in (3.5) and (3.5)′ would vanish. This implies that λ0 is a true parameter of
anisotropy. So, we dimensionalize it and expand the state variables in this,

β =
λ0

λ1 + 2λ2
< 1, (3.7)

z = z0 + βz1 + β2z2 + β3z3 + · · ·

Φ = Φ0(Z, Z̄) + βΦ1(Z, Z̄) + β2Φ2(Z, Z̄) + β3Φ3(Z, Z̄) + · · · , (3.8)

f = f0 + βf1 + β2f2 + β3f3 + · · · .

Putting (3.8) in (3.5) and (3.5)′ we obtain the recurrence system for the equi-
librium equations and the boundary conditions:

∞∑

m=0

βmFm = 0, (3.9)

∞∑

m=0

βmPm = 0 , (3.9)′

where

Fm ≡ ∂Φm

∂Z
+2(λ1 +2λ2)

∂2zm−1

∂X1∂X1
; zk = 0 if k < 0, k = m−1, m = 0, 1, 2, ...,

Pm ≡ ifm
ds

dS
− dZ

dS
Φm(Z) + 4λ2

dzm

dS
− 2λ0

∂zm−1

∂X1
iN1 .

Now, if we set every coefficient of the powers of β to zero in equations (3.9)
and (3.9)′, we shall obtain a recurrence system of equations, i.e., Fm = 0 and
Pm = 0; m = 0, 1, 2, . . . . The first equation in the recurrence system due to
(3.9) is Laplacian (i.e., homogeneous) while each of the subsequent ones are Pois-
sonian (i.e., non-homogeneous), with the right hand depending recursively on the
solution of the previous equation. Thus, this much is the effect of anisotropy on
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the medium: and has in no way influenced the fact or exposed the issue of finite
deformation. The effect of finite deformation is exposed in what follows.

Boundary value problem at the first level

Now, the bounary value problem at the first level can be written out explicitly.
Really, following from expansion (3.8), let

z0 ≡ w = w1 + iw2; Φ0 ≡ F (Z,Z) and f0 ≡ h = h1 + ih2 . (3.10)

Then the first equation in (3.9) is:

∂F (Z,Z)
∂Z

= 0 (3.11)

with the corresponding boundary condition from (3.9)’

ikh
ds

dS
=
dZ

dS
F (Z,Z) − 4λ2

dw

dS
, (3.11)′

where h ≡ f0 is the specified force per unit length of the current boundary
contour.

We recall that by the Cauchy-Riemann equations, relation (3.11) implies that
F is an analytic function of only the variable Z, in the finite plane and can then
be written as

F = F (Z)
and by (3.3), (3.6)′, (3.8) and (3.10) we have

F (Z) = φ0(q0) exp (iχ0); q0 = 2
∣∣∣∣
∂w

∂Z

∣∣∣∣; exp (iχ0) =
∂w

∂Z

/∣∣∣∣
∂w

∂Z

∣∣∣∣. (3.12)

Now, on every contour of the material, the boundary force can be decomposed
into its normal hn and tangential hs components. Noting that

hn = n · h = 1/2(nh̄+ n̄h);
hs = s · h = 1/2(sh̄+ s̄h);

n = −idw
ds
, s =

dw

ds
,

we have

hn =
1
2k

[
dZ

ds

dw̄

ds
F (Z) +

dZ̄

ds

dw

ds
F (Z) − 2λ2

]
, (3.13)

hs =
i

2k

[
dZ̄

ds

dw

ds
F̄ (Z) − dZ

ds

dw̄

ds
F (Z)

]
. (3.14)

4. Solution of boundary value problem at the first level
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Following from the previous sections, in complex variable formulation the
deformation under consideration is given by the tansformation

X1 + iX2 = Z −→ w = w1 + iw2 :

z0 = R0(r)ei(ϕ+θ(r)) = R0(r)eiθ(r)

√
Z

Z̄
. (4.1)

Let
z0 ≡ w, R0(r) ≡ v(r); Z = reiϕZ̄ = re−iϕ.

Then

r =
√
ZZ̄, eiϕ =

√
Z

Z̄
and

∂r

∂Z
=

1
2
(ZZ̄)−

1
2 Z̄ =

1
2
e−iϕ, (4.2)

∂

∂Z
eiϕ =

1
2

√
Z̄

Z

1
Z̄

=
1
2r
. (4.3)

By (4.1) - (4.3) we have

2
∂w

∂Z
= 2

∂w

∂r

∂r

∂Z
+ 2

∂w

∂eiϕ

∂eiϕ

∂Z

=
∂w

∂r
eiϕ +

∂w

∂eiϕ

1
r

=
[
v′(r) + iv(r)θ′(r) +

v(r)
r

]
eiθ(r)

= peiγ(r)eiθ, (4.4)
where

peiγ(r) ≡
[
v′(r) + iv(r)θ′(r) +

v(r)
r

]
= M(Z, Z̄),

p2 = |M(Z, Z̄)|2 = MM̄ =
[
v′(r) +

v(r)
r

]2

+ [v(r)θ′(r)]2, (4.5)

cos γ(r) =
1
p

[
v′(r) +

v(r)
r

]
, sin γ(r) =

1
p
[v(r)θ′(r)].

Compared with (3.3) or (3.12) and (3.6)′, when k = 1, we have

χ0 = θ + γ, φ(p) = (λ1 + 2λ2)
[
p− 2(λ1 + λ2)

λ1 + 2λ2

]
.

Then the harmonic function in (3.12) takes the form

F (Z) = (λ1 + 2λ2)
[
p− 2(λ1 + λ2)

λ1 + 2λ2

]
ei(γ+θ). (4.6)
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This expression makes F a complex function of argument r only, defined on
a bounded ring r1 ≤ r ≤ r2, on which it can be generated in Laurent’s series.
Since the domain of definition is bounded, then the function is a constant [5]:

F (Z) = const.

Consequently, p and γ+θ will take constants values and we can write respectively

p = D, γ + θ = B, (4.7)

such that

F (Z) = (λ1 + 2λ2)
[
D − 2(λ1 + λ2)

λ1 + 2λ2

]
ei(γ+θ). (4.8)

From (4.5) we have
(
v′ +

v(r)
r

)2

+ (vθ′)2 = D2

or
[(rv)′]2 + r2v2θ′

2 = r2D2 (4.9)

and

cos γ = cos(B − θ) =
1
D

(
v′ +

v

r

)
, sin γ = sin(B − θ) =

1
D
vθ′. (4.10)

From (4.10), we obtain

(rv)′

rv
= θ′ cot(B − θ).

On integration, we obtain

rv(r) sin(B − θ) = C, (4.11)

where C is another constant of integration which, along with others, are found
from the boundry conditions. At the first level, these conditions are:

v(r1) = r1, v(r2) = r2; θ(r1) = α, θ(r2) = 0. (4.12)

By these and (4.11) we deduce the values for B and C from the expressions

r22 sinB = C, r21 sin(B − α) = C;
r22
r21

=
sin(B − α)

sinB
. (4.13)

Now, substituting for rv(r) from (4.11) into (4.9) we obtain

θ′

sin2(B − θ)
=

rD

sinB r21
or

dθ

sin2(B − θ)
=

D

sinB r21
rdr. (4.14)
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We intergrate this to obtain

cot(B − θ) =
1
2

D

sinB r21
r2 +A. (4.15)

By using the boundary conditions (4.12) we find the constants A,D:

D = −2
sinα

sin(B − α)
r22

r22 − r21
, (4.16)

A =
r22

r22 − r21
cot(B − α) − r21

r22 − r21
cotB. (4.17)

Finally, from (4.15) we obtain

cot(B − θ) =
r22 − r2

r22 − r21
cot(B − α) − r21 − r2

r22 − r21
cotB. (4.18)

Thus, we obtain the solutions (4.11) and (4.18) to the posed problem.

5. Example: torsion of tube through a shaft

We consider a tube of concentric cylinders, with inner radius r = r1 and outer
radius r = r2. Suppose the tube is subjected to torsion via an inserted rigid shaft
that is turned through a constant angle, θ = α. The exterior surface is fixed,
θ = 0. We are interested in the radial position of fibre elements of the tube in
the current configuration (i.e., what has become of a fibre that was radial prior
to deformation ?).

Following from the theory in the previous section, we observe that in complex
variable formulation, the equilibrium equations at the first level reduce to (3.11).
This in turn leads to (3.12) or (4.6). So, on the strength of relations (4.5) and
conditions (4.7), the equilibrium equation gave rise to (4.9) and (4.10). However,
(4.10) is intergrated to obtain (4.11).

Now, we rewrite (4.9) as
[
(rv)′

r

]2

+ (v2θ′) = 2D0 , (5.1)

where 2Do = D is a constant to be determined. Also, from (4.11) we obtain

sin(B − θ) =
C

rv
, cos(B − θ) =

√
1 −

(
C

rv

)2

. (5.2)

Putting this in (5.1) and integrating the result gives
√

(rv)2 − C2 = D0r
2 +K. (5.3)
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Thus, we obtain (4.11) and (5.3) as the general solutions of the problem.
These can be put in the form

v2 =
(
D0r +

K

r

)2

+
C2

r2
(5.4)

and
θ = B − sin−1 C

rv
, (5.5)

where the constants B,C,D0 and K are found from the 4 boundary conditions
of the problem

θ(r1) = α, θ(r2) = 0, v(r1) = r1, v(r2) = r2. (5.6)

The problem is completely resolved when the values of these constants are
reflected in the general solution. To this end, we evoke the following non-
dimensional parameters

ρ =
r

r1
, u =

v

r1
, a =

r2
r1
, (5.6)′

where r2 > r1 and a is a geometric constant. Then, the boundary conditions
(5.6) become

θ(1) = α, θ(a) = 0, v(1) = 1, v(a) = a. (5.7)
Now, by the first two conditions in (5.7) we deduce the constants B and C

from (4.11). In fact, in view of (5.7) we have

sin(B − α) = C, a2 sinB = C

such that
sinB cosα− cosB sinα = C

and

sinB =
C

a2
, cosB =

√
1 −

(
C

a2

)2

.

Then

B = sin−1 sinα
γ

, C =
a2 sinα

γ
, (5.8)

where γ =
√
a4 − 2a2 cosα+ 1.

Also, the last two conditions in (5.7) enable us to find D0 and K from (5.4).
In fact, from (5.4)

D0 +K =
√

1 − C2, a2D0 +K =
√
a4 − C2.

Solving these expressions simultaneously, using the value of C given in (5.8), we
obtain

D0 = −
1 + a2

γ
, K = 2

a2 cos2 α
2

γ
. (5.9)
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Consequently, from (5.4) and (5.5), on the basis of (5.8) and (5.9), we obtain
the final solutions as

u(ρ) =

√
1
γ2

{[(
2a2 cos2

α

2

)1
ρ
− (1 + a2)ρ

]2

+ (a4 sin2 α)
1
ρ2

}
(5.10)

and

θ(ρ) = sin−1

(
sinα
γ

)
− sin−1

(
sinα
γ

a2

ρu

)
. (5.11)

A cursory look at the relations reveals that there is a change in radial mag-
nitude of material fibre as a result of torsion from the reference configuration to
the current configuration. This is a nonlinear phenomenon, due to finite defor-
mation approach. It is often not explicitly noticed by the linear theory of the
classical elasticity (or the small deformation theory of elasticity) [6].

x y

a

b
c

1 2 3

3

2

1

0
a

Figure 1. The curves ay, by and cy represent the current con-
figurations of a radial fibre which was segment [x, y] in the initial
configuration.

In fact, in Figure 1, the curves represent the current configurations of the
fibre xy (defined by ϕ = const, in the reference configuration), as the layer is
subjected to torsion, by turning an inserted rigid shaft of equal radius as the
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internal radius of the tube a = 1, in angle θ = 30o, 45o and 60o respectively. The
tube’s thickness is 1 < a < 3. It is observed that the value of the displacement,
u(ρ)− ρ, is non-positive. i.e., fibre elements of the tube reduce in radial length
as the tube undergoes torsion, and as we move away from the interior layer the
angle of displacement of a fibre decreases. This implies that the shaft, indeed,
experiences what we call a “hold” (or “grip”) from the torsioned tube.

6. Conclusion

By invoking homogenization concept a nonlinear problem of heterogeneous
medium has been converted to that of homogeneous but anisotropic problem.
With the aid of anisotropic expansion we have been able to distil from a nonlinear
anisotropic problem a recurrence system of isotropic problems and consider the
problem at the first level.

Relation (4.11) and (4.18) allow us to find the position (radius r(R) and angle
θ(R)) of a particle in the current configuration Ω; where, the 4 boundary condi-
tions specified by (4.12) are employed to establish the 4 constants of integration,
A,B,C,D. Those two relations thus constitute a solution of the problem. The
specific example of a tube subjected to torsion from the interior by a rigid shaft
is solved completely. By (5.10) and (5.11), it is seen that the radial fibres of
the tube decrease in length. This confirms the phenomenon referred to as “hold
effect”.
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