

SYNTHESIS, CHARACTERIZATI ON AND ANTI MALARI A STUDIES OF SOME MONO CARBONYL CURCUM N ANALOGS AND THEIR ARYL

HYDRAZONE DERIVATI VES

OLATOM DE AYODEJI FADARE

B Sc., MSc. (Che mistry) (Ife)

SCP11/12/R/0152

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHYIN THE DEPARTMENT OF CHEMISTRY, FACULTY OF SCIENCE, OBAFEM AWOLO WO UNIVERSITY

ILE-IFE, N GERIA

2016

OBAFEM A WOLOWO UNIVERSITY, ILE-IFE

HEZEKIAH OLUWASANM LIBRARY

POSTGRADUATE THESIS

AUTHORISATI ON TO COPY

AUTHOR: Clatomide Ayodeji FADARE

TI TLE:Synthesis, Characterization and Antimalaria Studies of someMono Carbonyl Curcumin Analogs and their Aryl HydrazoneDerivatives

DEGREE: Ph. D (Organic Chemistry)

YEAR 2016

I, Oatomide Ayodeji FADARE, hereby authorize Hezekiah Ouwasanmi Library to copy my thesis in whole or in part, in response to requests from individual researchers and organizations for the purpose of private study or research

Si gnat ure and Date:

.....

CERTIFI CATION

We certify that this project work was carried out by Mf. FADARE O atomide Ayodeji and Supervised by Prof. C A. Obafemi (Chemistry Department, Obafemi Awolowo University, Ile-Ife) and Co-supervised by Prof. E O I wale wa (Pharmacology Department, University of Ibadan, Ibadan) in partial fulfillment of the requirements for the award of Ph. D degree in Chemistry of the Obafemi Awolowo University, Ile-Ife, Osun state, Nigeria.

Supervisor Gaig A Obafe ni Prof. E O Iwal e wa Prof. O O Sori yan

ACKNOWLEDGE MENTS

With a deep sense of a we I express profound gratitude to the A mighty God for the grace and mercy that I received from him that allowed me to successfully complete this research work I a msaying a big thank you to my Supervisor, Prof C A Obafe mi and my Co-supervisor, Prof E O I wale wa for their professional and wise counsel as well as guidance during the course of this work. I also appreciate my colleagues and staff in the department of Chemistry and the Central Science Laboratory of Obafe mi Awol owo University, Ile-Ife for all the support that I received during the course of this work. I acknowledge the organizations; Bi odefence Emerging Infectious Diseases (BEI resources, USA), Malaria Research and Reference Reagent Resource Center (MR4, USA) who supplied the NK65 strain of the chloroquin sensitive strain of *Plas modium berghei* used in this study as well as BioSol ve IT, the provider of LeadI T tools package of which FlexX docking programis part of, for giving me a six weeks' license to use the HexX programfor the molecular modelling aspect of this study.

I particularly would like to say a special thank you to the administration of, Obafe mi Awolo wo University, Ile-Ife, for the financial aid that I received during the course of this Ph. Dprogramin the for mof free tuition by virtue of being a member of staff of the university as well as my wife, Rachael and son, Tijesuni mi for their moral support during the course of doing the laboratory research and the writing of the thesis.

TABLE OF CONTENTS

Aut horizati on to copy	ii
Certification	iii
Acknowledgments	iv
Table of contents	v
List of Appendices	x
List of Abbreviations	xiii
List of Figures	xv
List of Schemes	xxi
List of Tables	xxii
Abstract	xxiii
CHAPTER ONE	
1.0. I NTRODUCTI ON	1
1.1 Life Cycle of the Malaria Parasite and Progress of Disease in Man 3	
1.2. Bi oche mistry of Parasite	7
1.2.1. Di gesti on of He mogl obi n	7
1.2.2 Det oxification of Free He me	14
1.2.3. Degradation of Carbohydrates and Energy Production	15
1.2.4. Role of Folate in Nucleotide Synthesis	17
1.25. Redox Mechanism	17

OBAFEMI AWOLOWO UNIVERSITY vi

1. 3.	Mechanisn	nof Drug Actio	n and Resistance	18
	1. 3. 1.	Inhibition of 1	He mozoi n Bi ocrystallizati on	19
	1. 3. 2	Antifolates		22
	1. 3. 3.	Drugsthat aff	ect the Parasite's Redox Mechanism	26
1. 4.	Drugs Curr	ently in use for	Mallaria Che motherapy	28
	1. 4. 1.	Qui ni ne Anal	ogs	31
	1. 4. 2.	4- Ami noqui no	bline Analogs	32
	1. 4. 3.	8- Ani noqui no	oli nes	33
	1. 4. 4.	9- Ami noacri d	i nes	36
	1. 4. 5.	Guanidine An	al ogs (B guani di nes)	36
	1. 4. 6.	Pyrimidine An	nal ogs	40
	1. 4. 7.	Sul phones		42
	1. 4. 8.	Artemisinin		45
	1. 4. 9.	Mefloquine		48
	1. 4. 10.	Hal of ant hri ne		48
	1. 4. 11.	Lu mefant hri n	9	51
1. 5.	Computer .	Aided Drug De	si gn (CADD)	51
	1. 5. 1.	Li gand- Based	Drug Design	55
	1. 5. 2.	Structure-Base	ed Drug Design	55
	1. 5. 3.	Mol ecul ar Do	cki ng	56
		1. 5. 3. 1.	Pose Functions	63
		1. 5. 3. 2	Scoring Functions	65
	1. 5. 4.	History of Me	dicinal Chemistry and Advances	

	in Molecular Modelling	69
CHAP	PTER TWO	
2.0	LI TERATURE REVIEW	76
2. 1.	Curcumin	76
2.2	Curcumin as an Antimalarial Agent	79
2.3.	Search for Super Curcumin	82
2.4.	Cur cu ni n Deri vati ves	87
2. 5.	Cur cu ni n Anal ogs	87
2.6	Met al Complexes	88
2. 7.	Ai ms and Objectives	96
CHAP	PTER THREE	
3. 0.	MATERIALS AND INSTRUMENTS	97
3. 1.	General Details	97
3.2	List of Reagents and Suppliers	98
3. 3.	Soft ware and X-Ray Grystall ographic Data used for the Mollecular	
	Docking Study	98
3. 4.	Experimental Animals for In-Wvo Assay	99
3. 5.	Met hodol ogy	99
	3. 5. 1. Synt hesi s	99
	3. 5. 1. 1 $(1E, 4E)$ -1, 5-di phenyl penta-1, 4-di en-3-one, 1a	99
	3. 5. 1. 2 $(1E, 4E)$ -1, 5-bis(4-hydroxy-3-methoxyphenyl)	
	pent a-1, 4-di en-3-one, 2a	100
	3. 5. 1. 3. $(1E, 4E)$ - 1, 5- bis(4- met hoxyphenyl)	

	pent a-1, 4-di en-3-one, 3a	100
3. 5. 1. 4.	(1E, 4E)-1, 5-bis(2-hydroxyphenyl)	
	pent a-1, 4-di en-3-one, 4a	100
3. 5. 1. 5.	(1E, 4E)-1-(napht hal ene-1-yl)-5-(napht hal ene-4-yl)	
	pent a-1, 4-di en-3-one, 5a	101
3516	(1E, 4E)-1, 5-bis(2-chlor oqui noli n-3-yl)	
	pent a-1, 4-di en-3-one, 6a	101
3. 5. 1. 7.	(1E, 4E) - 1, 5 - bis(2 - nitrophenyl)	
	pent a-1, 4-di en-3-one, 7a	102
3. 5. 2. 1	2, 4-dinitrophenyl hydrazone of compound 1a	102
3. 5. 2. 2.	2, 4-dinitrophenyl hydrazone of compound 2a	103
3. 5. 2. 3.	2, 4-dinitrophenyl hydrazone of compound 3a	103
3. 5. 2. 4.	2, 4-dinitrophenyl hydrazone of compound 4a	104
3. 5. 2. 5.	2, 4-dinitrophenyl hydrazone of compound 5a	104
3. 5. 2. 6	2, 4-dinitrophenyl hydrazone of compound 6a	105
3. 5. 2. 7.	2, 4-dinitrophenyl hydrazone of compound 7a	105
3.5.3. 2,4-dinitroph	enyl hydrazone of curcumin, 11e	106
3.5.4. Reaction Sch	e mes	107
Mol ecul ar Model ling	g (Docking) Studies	109
Phar macol ogy		109
3. 7. 1. Acute Toxici	t y Test	109
3.7.2 <i>In-Wvo</i> : Che	mos uppressive Test	110

CHAPTER FOUR

3. 6.

3. 7.

4. 0.	RESULTS AND DISCUSSION	111
4. 1.	Che mi stry	111
4.2	Mol ecular Docking of Synthesized Compounds with Plasmepsin II	117
4. 3.	Phar macol ogy	133
4.4.	DI SCUSSI ON	142
	4. 4. 1. Infrared Spectroscopy	142
	4.4.2 Utraviolet - Visible Spectroscopy	144
	4.4.3. Characterization of Pure Curcumin and its DNP Derivative.	144
	4.4.4. Char acterization of Compound 1a	147
	4.4.5. Characterization of Compound 2a and derivative	147
	4.4.6 Characterization of Compound 3a and its derivatives.	149
	4.4.7. Molecular Modelling (Docking)	152
4. 5.	Phar macol ogy	154
4. 6	Application of Lipid Based Drug Delivery System (LBDDS) in the	
	Ad ministration of Curcumin and Test Compounds	163
4. 7.	Sur vi val Index	170
4.8	Short-Ter m Action and Parasite Recrudescence	171
4. 9.	Compounds with Good Che no Suppression and Survival Index Profiles	171

CHAPTER FI VE

5. 1. CONCLUSI ON 177

5.2 RECOMMENDATI ON

References

Appendi x

178

204

180

OBHERMIANO UNIVERSITY

LIST OF APPENDICES

Appendi x	Capti on	Page
1	1 H NMR Spectrumfor Compound 1a	205
2a	1 H NMR Spectrum for Compound 7a	206
2b	1 H NMR Spectrum for Compound 7a with Aromatic Region Expanded	207
2c	13C NMR Spectrumfor Compound 7a	208
2d	13C NMR Spectrum (Attached Proton Test, APT) for Compound 7a	209
3a	1 H NMR Spectrum for Compound 7b	210
3b	1 H NMR Spectrum for Compound 7b	211
3c	13C NMR Spectrumfor Compound 7b	212
3d	13C NMR (Attached Proton Test, APT) Spectrum for Compound 7b	213
4a	1 H NMR Spectrum for Compound 3a	214
4b	1 H NMR Spectrum for Compound 3a	215
5	1 H NMR Spectrum for Compound 3b	216
ба	1 H NMR Spectrum for Compound 3c	217
6b	13C NMR Spectrumfor Compound 3c	218
6с	13C NMR (Attached Proton Test, APT) Spectrum for Compound 3c	219
6d	Het er onuclear Correlation NMR Experiment (HETCOR)	
	for Compound 3c	220
7	1 H NMR Spectrum for Compound 2a	221
8	1 H NMR Spectrum for Compound 2b	222

OBAFEMI AWOLOWO UNIVERSITY xii

9	1 H NMR Spectrumfor Compound 11d	223
10	1 H NMR Spectrum for Compound 11e	224
11	Infrared Spectrumfor Compound 1a	225
12	Infrared Spectrum for Compound 1b	226
13	Infrared Spectrum for Compound 2a	227
14	Infrared Spectrumfor Compound 2b	228
15	Infrared Spectrum for Compound 3a	229
16	Infrared Spectrum for Compound 3b	230
17	Infrared Spectrum for Compound 3c	231
18	Infrared Spectrum for Compound 4a	232
19	Infrared Spectrumfor Compound 4b	233
20	Infrared Spectrum for Compound 5a	234
21	Infrared Spectrum for Compound 5b	235
22	Infrared Spectrum for Compound 6a	236
23	Infrared Spectrum for Compound 6b	237
24	Infrared Spectrum for Compound 7a	238
25	Infrared Spectrum for Compound 7b	239
26	Infrared Spectrum for Compound 11d	240
27	Infrared Spectrumfor Compound 11c	241
28	Utraviolet-Visible Spectrumfor Compound 1a	242
29	Utraviolet-Visible Spectrumfor Compound 1b	243
30	Utraviolet-Visible Spectrumfor Compound 2a	244
31	Utraviolet-Visible Spectrumfor Compound 2b	245

OBAFEMI AWOLOWO UNIVERSITY xiii

32	Utraviolet-Visible Spectrum for Compound 3a	246
33	Utraviolet-Visible Spectrumfor Compound 3b	247
34	Utraviolet-Visible Spectrumfor Compound 3c	248
35	Utraviolet-Visible Spectrum for Compound 4a	249
36	Utraviolet-Visible Spectrumfor Compound 4b	250
37	Utraviolet-Visible Spectrumfor Compound 5a	251
38	Utraviolet-Visible Spectrumfor Compound 5b	252
39	Utraviolet-Visible Spectrum for Compound 6a	253
40	Utraviolet-Visible Spectrumfor Compound 6b	254
41	Utraviolet-Visible Spectrum for Compound 7a	255
42	Utraviolet-Visible Spectrumfor Compound 7b	256
43	Utraviolet-Visible Spectrumfor Compound 11d	257
44	Utraviolet-Visible Spectrumfor Compound 11e	258
45-55	3D and 2D Poses from HexXfor Compound 1a-8b	259

LIST OF ABBREVIATIONS

- ACT: Arte misi ni n combinati on therapies
- ADME: Absorption, Distribution, Metabolism and Himination
- ATP: Adenosi ne tri phos phat e
- BCS: B ophar maceutical classification system
- Caco-2 cells: Heterogeneous human epithelial colorectal adenocarcinoma cells
- CDC Centre for disease trans mission and control
- CQ. Chloroquine
- CRT: Chloroqui ne resistant transporter
- DDT: D chl or odi phenyl tri chl or oet hane
- DHC D hydrocurcumin
- DHFR D hydr of ol at e reduct ase
- DHPS: D hydr opt er oat e synt hase
- DNA: Deoxyri bonucl ei c aci d
- DNP: Dinitrophenyl hydrazine/Dinitrophenyl hydrazone
- DP AP: D pepti dyl a minopepti dase
- dTMP: Thy mi di ne monophos phat e
- dUMP: Ui dine monophosphate
- FaSSIF. A patented complex of taurochol at e and lecithin
- GIT: Gastrointestinal tract
- GTP: Guanosi ne-5-tri phos phat e
- Hb: He moglobin

- HHC Hexahydrocurcumin
- Hz: He mozoi n
- IgG Immunoglobulin G
- IL-6: Interleukin 6
- LBDDS: Lipid based drug delivery system
- LDH Lact at e dehydr ogenase
- LPS: li popol ysacchari de
- MDR: Multi drug resistance
- MDR1: Multi drug resistance transporter
- NAD N coti na mi de adeni ne di nucl eoti de
- NADH Reduced for mof NAD
- NADPH N coti na mi de adeni ne di nucl eoti de phosphate
- OHC: Octahydrocurcumin
- pABA para-Ami nobenzoi c aci d
- PFOR: Pyruvate-ferredoxi n oxi doreduct ase
- PL: Phospholipid
- ROI: Reactive oxygen inter mediate
- RT-PCR: Reverse transcription polymerase chain reaction
- SI: Survival index
- S MEDDS: Self-micro emul sifying drug delivery system
- SNEDDS: Self-nano e mul sifying drug delivery system
- SOD Superoxi de dis mutase
- TCA: Tricarboxylic acid

TG Triglyceride

THC Tetrahydrocurcumin

TNF: Tumor necrosis factor

WHO. World health or gani zati on

LIST OF FIGURES

Fi gure	e Caption	Page
1. 1	Extent of Malaria Transmission in Different Regions	
	of the World as at 2010.	2
1. 2	Data on Reported Cases of P. fd ci parum Resistance	
	to Clinical Antimalarial Drugs	4
1. 3	Life Cycle of the Mallaria Parasite.	8
1.4	(Heterotetramer, $(\alpha\beta)_2$) Structure of Human He moglobin	11
1. 5	The He moglobin Digestion Pathway (Wser, 2008);	13
1. 6	Pathway Showing the Degradation of Gucose by the	
	Plas modium to Yield Energy (ATP).	16
1. 7	The Accumulation of Chloroquine (CQ) in the Food Vacuale	
	of the Parasite.	21
1. 8	Simplified Scheme of Folate Metabolism	24
1. 9	Pathway Showing Actions of Ntroi midazoles.	29
1. 10	The Quinine Alkaloids Extracted from the Bark of Ginchona officianalis	

OBAFEMI AWOLOWO UNIVERSITY xvii

	Linne (Cledgeriana Moens) are Potent Antimalarial Agents	31
1. 11	Tautomerism of Amodiaquine Base into the Iminoquinone Form.	34
1. 12	Hydroxychloroquine though an Antimalarial Drug is Also Effective	
	in the Suppressive Treatment of Autoi mmune Inflammatory Diseases	
	such as Rheumatoid Arthritis and Systemic Lupus Erythromatosus.	35
1.13	8-Ani noqui noli ne Analogs Being Marketed as Anti malarial Drugs.	37
1. 14	Me pacrine Mesylate and Me pacrine Hydrochloride Are Acridine Analogs	38
1. 15	Ami noacrichin along with its Structural Analogs Were Introduced as	
	a Blend of 4 Ami noqui nol one and 8 Ami noqui noli ne Features but they	
	were not so Successful as a Result of their High Toxicity.	39
1. 16	Structure of Proguanil and Mechanism of Cyclization to Form	
	Cycloguanil the Active Metabolite.	41
1. 17	Pyrimethamine and Trimethoprim which were Marketed with	
	the Trade mark Names by Burroughs Wellcome. Trimethoprim was	
	also Marketed with the Brand Name Trimpex by Roche.	43
1. 18	Sulfadoxine and Sulfametopyrazine are Sulfanilani de Based Drugs.	44
1. 19	Dapsone is 4,4 Diaminodiphenyl Sulfone and was Marketed	
	as Avlosulfon [®] By Ayerst.	46
1. 20	Artemisinin Derivatives Designed to be Soluble in Different Media,	
	either Water Soluble or Lipid Soluble.	47
1. 21	Mefloquin was Developed by the United States Mlitary	
	Research Depart ment.	49
1. 22	Hal of ant hrine, a Phenantrene Methanol, is a Potent Inhibitor of the	

1.22 Hal of ant hrine, a Phenantrene Met hand, is a Potent Inhibit or of the

	For mation of β -He matin by the Malaria Parasite.	50
1. 23	Lu mefanthrine, a Huorene Methanol, also a Potent Inhibitor of the	
	For mation of β -He matin and is Used in Conjuction with Artemisinin	
	Derivative, Especially Artemether, in ACTs.	52
1. 24	A Drug Discovery Cycle Highlighting both Ligand-Based	
	(Indirect) and Structure-Based (Direct) Drug Design Strategies.	54
1. 25	3 D Representation of a Small Molecule Docked into a Binding	
	Pocket of a Protein Molecule.	57
1. 26	Some Docking Programs in a Ple Chart Showing the Extent to	
	which they are Used G obally as at 2006.	62
1. 27	Diagram Showing a Deviation of Only 20° in the Dihedral Φ of	

	the Selective Estrogen Receptor Modulator Raloxifene which would	
	Result in a Change of 25 Åin the Tertiary Ani ne Position, thereby	
	Mssing the Favorable Hydrogen-Bond Interaction with Asp351.	64
1. 28	Scheme for Incremental Construction (top line) and Place-and-Join	
	(bottomline) as Examples of the Mode of Operation of	
	Systematic Search Algorithms.	66
2.1	(1E, 6E)-1, 7-bis(4-hydroxy-3-met hoxyphenyl)	
	hept a-1, 6-di ene-3, 5-di one (di fer ul oyl met hane)	77

2.2 Plant Derived Derivatives of Curcumin of which

	Curcuminis the Most Studied.	83
2.3	Some other Plant Derived Compounds that have Structural	
	Moi eti es that Resemble Curcumin.	84
2.4	Synthetic Derivatives of Curcumin – The Aryloxy (Phenolic)	
	Group has been Modified in the Two Cases.	85
2.5	Curcumin with Possible Positions for Structural Modification Highlighted.	86
2.6	Synthetic Analogs of Curcumin.	89
2.7	Monocarbonyl Curcumin Analogs have the CH2 CO Group Removed.	90
2.8	Monocarbonyl Curcumin Analogs Synthesized by Liang et al., 2009b	91
2.9	The Monocarbonyl Curcumins Can be Synthesized by the	
	Claisen Schmidt Condensation of Substituted Aromatic Aldehydes	
	(2 Molls Equivalent) with One Molle Equivalent of Either Acetone,	
	Cycl ohexanone or Cycl opent anone.	92
2.10	Various Qurcumin Derivatives – Review by	
2.11	A Synthesized Tetraoxane R ng Systemas Compared	
	with the Trioxane Ring System in Artemisinin.	94
2.12	Novel Huoro Knoevenagel Condensates and their Schiff Bases	
	which were used to for mCopper Complexes (Malacic et al., 2008).	95
4.1	Structure of Has mepsin II Deduced from X-Ray Crystallographic Data.	119
4. 2	Chain A of H as mepsin II with the Co-G ystallized Compound Embedded.	120
4.3	Binding Site in Chain A of Plasmepsin II with the	
	Co- Grystallized Compound Enbedded.	121

4.4 Binding Site in Chain A of Plas mepsin II with the Co-Grystallized

	Compound Enbedded. The Binding Site has Been Converted	
	into a Surface.	122
4.5	Binding Site in Chain A of Plas mepsin II without the	
	Co- G ystallized Compound.	123
4.6	(a) 3D Pose-View of Chlor oqui ne Docked with Plas mepsin II	
	(b) 2D Pose- View of Chlor oqui ne Docked with Plas mepsin II.	124
4.7	(a) 3D Pose- View of Compound 5a Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 5a Docked with Plas mepsin II	125
4.8	(a) 2D Pose- View of Compound 5b Docked with Plas mepsin II	
	(b) 3D Pose- View of Compound 5b Docked with Plas mepsin II	126
4.9	(a) 2D Pose- View of Compound 6a Docked with Plas mepsin II	
	(b) 3D pose-view of compound 6a docked with plas mepsin II	127
4. 10	(a) 3D Pose- View of Compound 6b Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 6b Docked with Plas mepsin II	128
4.11	(a) 3D Pose- View of Compound 7a Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 7a Docked with Plas mepsin II	129
4.12	(a) 3D Pose- Mew of Compound 7b Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 7b Docked with Plas mepsin II	
4. 13	(a) 3D Pose- View of Compound 10a Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 10a Docked with Plasmepsin II	131
4.14	(a) 3D Pose- View of Compound 10b Docked with Plas mepsin II	
	(b) 2D Pose- View of Compound 10b Docked with Plas mepsin II	132

4. 15	Chart Showing % Che mosuppression and Survival Indices of Compound $1a$	
	and 1b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	135
4. 16	Chart Showing % Che mosuppression and Survival Indices of Compound 2a	
	and 2b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	136
4. 17	Chart Showing % Che mosuppression and Survival Indices of compound 3a	
	and 3b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	137
4. 18	Chart Showing % Che mosuppression and Survival Indices of Compound 4a	
	and 4b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	138
4. 19	Chart Showing % Che mosuppression and Survival Indices of Compound 5a	
	and 5b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	139
4.20	Chart Showing % Che mosuppression and Survival Indices of Compound 6a	
	and 6b at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	140
4. 21	Chart Showing % Che mosuppression and Survival Indices of Compound 11d	
	and 11e at Three Different Doses (50, 100 and 200 mg/kg)	
	in Comparison with Chloroquine at 10 mg/kg.	141
4. 22	Ket o-Enol Taut o meris mShowing the Extension in Conjugation that	
	the Extra CH ₂ CO Affords and the Hydrogen Bonding within	

	a Pseudo Six- Membered Ring System	143
4.23	The Suggested Cyclized Product from the Reaction of	
	Curcumin with 2,4-Dinitrophenyl Hydrazine. The Product is Thought to	
	be a Pyrazole which is Typical for Reactions of Curcumin with	
	Hydrazi no Derivati ves from Literature.	146
4.24	(a) Comparison of Compound 2a with Curcumin. Compound 2a	
	is the Monocarbonyl Curcumin Analog that Resembles Curcumin the most.	
	(b) Analysis of the 1 H NMR Spectrum of Compound 2b	148
4.25	(a) Analysis of the ¹ H NMR Spectrum of Compound 2e Showing the	
	Symmetry in the Aromatic Rings and the Entire Molecule.	
	(b) Analysis of the 1 H NMR Spectrum of compound 4e Showing the	
	Loss of Symmetry in the Entire Molecule and the Splitting of the CH	
	Protons in the Pyrazoline Moliety of the Molecule	151
4.26	Schematic Dagram Showing the Route of the Drug After Oral	
	Ingestion and Through the Gastro Intestinal Tract, Depicting the Extent	
	to Which the Drug is Absorbed (Good man and Gil man, 2006).	156
4. 27	Pathway Showing the Degradation of Curcumin when Administered	
	Orally and when Administered Intraperitoneal or Intravenous.	159
4. 28	The Portion (CH2CO) of the Parent Curcumin that is Excluded	
	in the Monocarbonyl Curcumin Analog	161
4.29	The B ophar maceutics Classification System (BCS) as Defined by the FDA	166
4.30	Structures of Some of the Compounds Synthesized in this Work	
	that Have a Good Che no Suppression and Survival Index Profile.	

Some of These Drugs May Be Considered for Further Tests.

OBHERMANOLOWING

LIST OF SCHEMES

Sc he n	e Caption	Page
3.1	Scheme Showing the Reaction of Substituted Benzal dehydes	
	with Acetone to for mthe Monocarbonyl Curcumin Analogs.	107
3.2	Scheme showing the Reaction of the Synthesized Monocarbonyl	
	Curcumins with 2,4-dinitrophenyl Hydrazine (DNP) to for mthe	
	Corresponding DNP Hydrazones (1-7) h, Reaction of Compound 3a	
	with 4-nitro Phenyl Hydrazine to for ma Pyrazoline Derivative $(3c)$ and	
	Reaction of Pure Curcumin (11d) with DNP to form a DNP Pyrazolone	
	Deri vati ve (11e).	108

LIST OF TABLES

Tabl e	Caption	Page
1. 1	Food vacuol e proteases in <i>H as modi umf d ci parum</i>	10
1. 2	Antifolate combinations used in malaria che mother apy	26
1. 3	Possi bl e redox agent s	28
1.4	Table of docking soft wares with country of origin and year of publication	59
4. 1	Table of physicoche mical properties	112
4.2	Nuclear magnetic resonance spectroscopic data of some of the	
	synt hesi zed compounds	113
4. 3	Nuclear magnetic resonance spectroscopic data for pure curcumin	
	and the DNP pyrazol e	115
4.4	Prominent Infrared absorbption bands from the spectra of the	
	s ynt hesi zed compounds	116
4. 5	Binding energy of synthesized compounds with plasmepsin II	118

ABSTRACT

The study synthesized mono carbonyl analogs of curcumin, the aryl hydrazone derivatives of the mono carbonyl curcumin analogs and a 2,4-dinitrophenyl pyrazolone derivative of curcumin itself. The synthesized compounds were then characterized, docked with plas mepsin II, and the acute toxicity of the synthesized compounds as well as the percentage chemos uppression of the rodent strain of malaria parasite (*H as modi um berghei*) NK65(CS) were determined. This was with a view to establishing the compounds suitable for a curative assay and discovering new potent and relatively non-toxic synthetic analogs of curcumin that could be used to combat *Pl as modi umf d ci parum* which is the malaria causal organis min man.

The monocarbonyl curcum ins were synthesized by a simple Claisen-Schmidt condensation reaction by reacting two molar equivalents of a substituted benzaldehyde with a molar equivalent of acetone in acidic/basic conditions to yield compounds **1a-7a**. The monocarbonyl curcum ins were then reacted with a molar equivalent of 2, 4-dinitrophenyl hydrazine with stirring in ethanol (at room temperature) under acid catalysis for 18 hrs to yield the corresponding DNP hydrazone **1b-7b**. Compound **3a** was reacted with 4-nitro phenyl hydrazine under the same conditions as DNP which resulted into a pyrazoline, **3c**. Curcum in was also reacted with DNP under the same condition to yield a pyrazolone, **11e**. The synthesized compounds were then characterized using spectroscopic techniques such as UV- Visible, IR, ¹H and ¹³C NMR spectroscopy. The synthesized compounds were docked with plas mepsin II, one of the enzy mes used by the parasite to digest hae moglobin, using flexX a part of the LeadI Ttools to estimate the binding affinity of the compounds for the protein as a function of antimal arial activity. All the synthesized compounds were tested *in-vivo* using a four day chemosuppressive assay for their antimal arial activity. The test ani mals were monitored after wards for 24 days to assess the

long ter meffect of the drug on the test models and to estimate the survival index (SI) of the test models with respect to the test compounds. The compounds were administered using a lipid based drug delivery system (cotton seed oil was used as the vehicle for the compounds administered orally).

The binding energies computed for the compounds ranged from - 19.29 to - 35.96 kJ/mol. Chloroquine was used as a control molecule and all the compounds had binding affinity greater than that of chloroquine (-17.02 kJ/mol). Some of the compounds docked had high affinity for the plas nepsin II. Compounds **1b**, **4b**, **5b**, **6a**, **6b**, **7b** and **10b** had binding energies ranging from -25 to -36 kJ/mol. Among the compounds listed, only compound **6a** was a monocarbonyl curcumin analog of curcumin. Compounds **1a** (83.72 % che mosuppression at 200 mg/kg and SI of 68.75 %, **2b** (81.93% che mosuppression at 200 mg/kg and SI of 50 %, **3a** (58.62 % che mosuppression at 200 mg/kg and SI of 100 %, **5a** (66.59 % che mosuppression at 100 mg/kg and SI of 68.75 %, **6a** (71.2 % che mosuppression at 50 mg/kg and SI of 46.15 %) and **11e** (74.09 % che mosuppression at 50 mg/kg and SI of 54.55 %) were the compounds that had the best conbination of survival index and che mosuppression profiles.

This study concluded that the compounds **1a**, **2b**, **3a**, **5a**, **6a** and **11e** had high che mos uppression compared to curcumin which was comparable to chloroquine and could therefore be selected for a curative *in-vivo* assay.

CHAPTER ONE

INTRODUCTI ON

Malaria is a deadly infectious disease caused by a blood-borne protozoan of the genus *Pl as modi um*(*P*) and is trans nitted by the female *Anopheles* mosquito. There are more than 120 species of the protozoan from the genus *Pl as modi um* of which five are currently known to infect humans: *P. falci parum P. vivax, P. mal ariae, P. knowelsi and P. ovale.* (Chin *et al.*, 1965; Jong wuti wes *et al.*, 2004; Cox-Singh *et al.*, 2008). Malaria is the second leading cause of death from infectious disease in Africa, where 89 % of worldwide malaria deaths occur (Figure 1.1) (About malaria – CDC, 2014). According to the world health organization's statistics on malaria, over 200 million people (including children) are infected yearly. In 2012 malaria caused 207 million clinical episodes, and 627, 000 people died from malaria and the number has increased steadily since then.

Mal aria is characterized by periodic bouts of severe chills and high fever. Serious cases of mal aria can result in death if left untreated. Among the five species of the plas modi umknown to afflict humans, *P. fol ci parum* causes the most severe for mof human malaria and results in a majority of the reported fatalities worldwide.

After repeated infections, people who live in regions where malaria is prevalent develop a limited immunity to the disease. This partial protection does not prevent the mfrom developing malaria again, but does protect the magainst the most serious effects of the infection. They generally develop a mild for mof the disease that does not last long and is unlikely to be fatal. Infants and children are especially vulnerable to malaria because they have not yet built up immunity to the parasite. Some people have genetic traits that help the mresist malaria. Sickle-

1. 0.

cell ane mia and thal asse mia, for example, are inherited blood disorders linked to malaria resistance. Over the years, the malaria parasite has developed resistance to existing drugs used

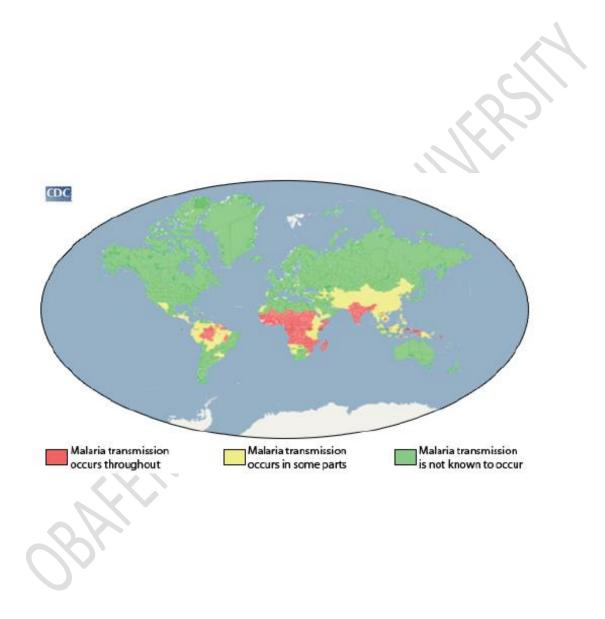
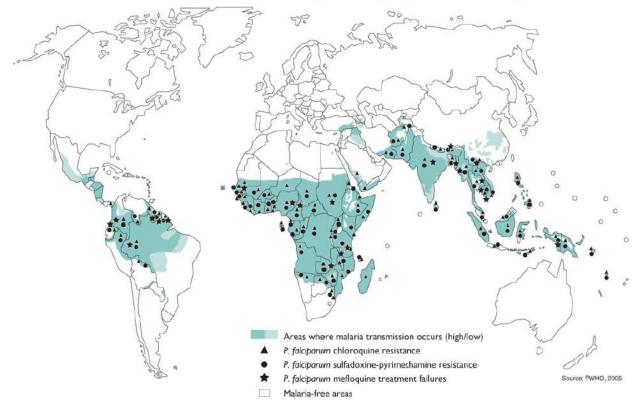


Figure 1.1: Extent of Malaria Transmission in Different Regions of the World as at 2010.

Source is Centre for Disease Transmission and Control, United States of America, www.cdc.gov ("Guidelines for the Treatment of Malaria" World Health Organization. <http://helid.digicollection.org/en/d/Js13418e/14.6.html>).


to treat the disease. Recent data reveals documented cases of drug resistance by Plas modium falciparum – the strain that causes the most severe clinical manifestation of the disease in man (Figure 1.2).

Artemisinin in combination with other antimalarial drugs is the preferred mode of treatment nowadays due to low resistance of the parasite to artemisisnin Recently, however, cases of resistance to artemisinin have been reported in Cambodia and Thailand (Dondorp *et al.*, 2009). The development of resistance to existing drugs by the parasites makes it expedient that new antimalaria drugs are developed for the treatment of the disease.

The disease vector (female anopheles mosquito) also constitute a problem in the eradication of the disease. Attempts to eradicate the disease in the absence of a vaccine has proved abortive over the years because of the continued existence of the disease vector in areas where the disease is endemic. When individuals are treated effectively with existing drugs, it cannot be guaranteed that they will not come down with the disease again since they are still exposed to the disease vector. The areas where the disease is endemic are areas where the vector thrives and is difficult to eradicate. The vector thrives in warm regions of the earth. The females which trans mit the disease lay their eggs in water where their larvae develop and mature. Due to the prevalence of the mosquito in malaria endemic regions, basic anti mosquito measures have been employed such as draining sites where mosquitoes lay their eggs, covering water channels, use of insecticide-

treated bed nets, spraying of insecticides and introducing into ponds fish that feed on mosquito larvae. The United States virtually eradicated malaria in the late 1940s and early 1950s through the use of the insecticide DDT. However, DDT was later banned in the United States and many other countries because of its har mful effects on the environment. Moreover, many species of *Anopheles* mosquitoes are now resistant to a wide range of insecticides, including DDT, as a result of the widespread use of these chemicals. Newer

Malaria transmission areas and reported P. falciparum resistance, 2004

Figure 1.2: Data on Reported Cases of P. fdciparum Resistance to Clinical Antimalarials "Guidelines for the Treatment of Malaria" World Health Organization. <http://helid.digicollection.org/en/d/Js13418e/14.6.ht nh>).