

RESERVOIR MODELLING AND UNCERTAINTY EVALUATION OF "X" FIELD, NIGER DELTA, NIGERIA.

BY

ANIETIE RAPHAEL ETIM B.Sc. (Hons.) GEOLOGY SCP/11/12/H/3145

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE DEGREE IN APPLIED GEOLOGY (SEDIMENTARY AND PETROLEUM GEOLOGY) OF THE DEPARTMENT OF GEOLOGY, FACULTY OF SCIENCE, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA.

2015

CERTIFICATION

We certify that this research work was carried out by Mr. Etim, Anietie Raphael with registration number (SCP11/12/H/3145) in the Department of Geology, ObafemiAwolowo University, Ile-Ife under my supervision. The thesis has been read and approved as meeting part of the requirements for the award of Master of Science (M.Sc.) degree in Applied Geology (Sedimentary and Petroleum Geology).

Prof. J. I. NwachukwuDr. A. A. Adepelumi

Supervisor

Head of Department

DEDICATION

This thesis is dedicated to my most prized possession, God and to all those who help others to achieve the best they can in life.

ACKNOWLEDGEMENT

Glory is to God for bringing to fruition this particular dream which you are holding in your hands despite the challenges in recent times. I appreciate my inner mind for the zeal to forge ahead upon all set back.

The accomplishment of this thesis depended on the immense contributions made by certain individuals and organizations which I feel obliged to accord them special recognition. Thus, I offer my unalloyed appreciation to Shell Petroleum Development Company of Nigeria, Port Harcourt for allowing me access to their facilities and staff in the cause of this research.

I am particularly indebted to my supervisor, Prof. J. I. Nwachukwu whose indispensable pieces of advice, helpful suggestions and painstaking review of the manuscript, had undoubtedly brought this thesis to lime light.

I am immeasurably grateful to Engr. Camillus E. Umoh, Mr. Moses Temuru, Mrs. EkaetteItuen, Mr. Emmanuel Ezim, Mr Stanley Harcourt of Shell Petroleum Development Company, Port Harcourt for their respective roles during this work. Also, Mr. Raymond Akpan and Mr. Jide of Department of Petroleum Resources (DPR) Lagos are acknowledged for their contributions.

I acknowledge with unfettered gratitude the encouragement and moral support I received from my B.Sc. supervisor, Prof. E. B. Akpan and Dr. N. U. Essien both of Geology Department; Dr. AkpanIdiok of Soil Science Department and Mr. Patrick Ndem of Registry, all of the University of Calabar.

The following very important people deserve inestimable gratitude for their comments and suggestions. They are; Dr. L. S. Fadiya, Dr. Adekola, Dr. Falebita, Dr. Ola, Mr. Ajibade, Mr. Edino and my Head of Department, Dr. A. A. Adepelumi.

I acknowledge with heart felt gratitude the contributions of my uncle, Dr. (Obong) L. M. Udoh JP, Mr. EtekambaUmoren, Hon ChrysanthusUdoh, Engr. AniebietEbu, Mr. NsikanIsidore, Pastor Stephen Udoh, Mr. Austen Umoh, Mr. ImeEbu, MrAniebietUsoro, Mr. UkpongeteJombo, Mr. Austen Umoh, Mr. ItoroNdem, Mr. Iboro Ernest, Mr. EmekAkpan, Mr. Rowland Nzeribe, Prince Idongesit Wilcox, Miss IdongesitAbatai and Miss Philomena Udoakang, may the good Lord reward you accordingly.

Most especially, I acknowledge the encouragement of my mother, Mrs. Martina R. Etim. My siblings James, Augustine, Emmanuel, Uduak, Grace, Agnes, Cornelia and my brother and sisters in-law are appreciated for their respective contributions towards this project. They are of great inspiration to me. My late sister, Mrs. NdifrekeEffiong Dan is acknowledged in a special way, she believed and supported this dream though she could not live to see its completion. May her soul continue to have repose in the bosom of our Lord, Amen.

For my colleagues SegunOgunleye, SalahudeenKazeem, Samuel Adeyemi, Ikenna and Sunday Omoteye, it has been a good moment. May the Lord bless you in all your future endeavors.

Above all, to God be the glory for all the things he has done for me.

TABLE OF CONTENTS

PAGE

TITTLE	i
CERTIFICATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
ABSTRACT	xii
CHAPTER ONE INTRODUCTION	1
1.1 General Introduction	1
1.2 Reservoir Modelling	2
1.3 Uncertainty Analysis	2
1.3.1 Uncertainty in Geophysical Data	4
1.3.2 Uncertainty of Geological Data	4
1.4 Statement of Research Problem	5
1.5 Objectives of Research	5
1.6 Expected Contribution to Knowledge	6
1.7 Literature Review	6
CHAPTER TWO:GEOLOGY OF NIGER DELTA	

2.1 General Overview	10
2.2 Tectonic Setting	13
2.2.1 Present Day Deltaic Deposition	17
2.2.2 Outcrops of the Tertiary Niger Deltaic Deposition	17
2.2.3 Subsurface Formations	19
2.3Depobelts	24
2.4Structural Geology of the Niger Delta	26
2.5Hydrocarbon Habitat of the Niger Delta	28
2.6 Petroleum system of the Niger Delta	32
2.6.1 Source Rocks	32
2.6.2 Reservoir Rocks	34
2.6.3 Traps and Seals	34
2.6.3.1 Structural Traps	35
2.6.3.2 Stratigraphic Traps	36
2.6.3.3 Combination Traps	36
2.6.4 Migration	36
2.6.5 Other Economic Deposits in the Niger Delta	37

CHAPTER THREE: BASIC DEFINITION AND STATISTICAL

	CONCEPT GUIDING RESERVOIR MODELLING	39
3.1	Algorithm Used in Quantifying Uncertainties	39
3.2	Linear Uncertainty Analysis	39
3.3	Probability Uncertainty Quantification	40

3.4	Input Parameter used for Probability Distribution Function	42
3.5	Quantification of Uncertainty Using Bayesian Approach	49
3.6	Experimental Design and Response Surface Method	50

CHAPTER FOUR: METHODOLOGY

CHA	APTER FOUR: METHODOLOGY	51
4.1	Data Set Used for the Interpretation	51
4.2	Structural Interpretation	52
4.3	Fault Interpretation	52
4.4	Well Correlation	57
4.5	Well to Seismic Tie	57
CHA	CHAPTER FIVE: RESULTS AND DISCUSSION	
5.1	Horizon Interpretation and Reservoir Description	62
5.2	Description of Interval 32	62
5.3	Description of Interval 36	70
5.4	Description of Interval 40	70
5.5	Grid Construction and petrophysical Distribution	70
5.6	Volumetric Calculation	85
5.7	Uncertainty Analysis	87

CHAPTER SIX:CONCLUSIONS AND RECOMMENDATION	
6.1 Summary and Conclusions	94
6.2 Recommendation	96
REFERENCES	
97APPENDICES	
102APPENDIX I	103
APPENDIX II	105
APPENDIX III	115
OBHILM ANOLOW	

LIST OF FIGURES

FIGUI	RE PAGE	
1.0:	Location Map of the study (Google Earth 2011)	
		11
2.0:	Location map of Niger Delta Sedimentary Basin amongst other Basins in Nigeria	
	(Modified after PetroconsultantsInc, 1996)	
		12
3.0:	Niger Delta Megatectonic element and growth fault area. (Modified after Doust	
	andOmatsola, 1990)	
		15
4.0:	Different Formations in Niger Delta and their Epoch(Modified after Lawrence	
	et al., 2002)	
		16
5.0:	Present Terrain and Sedimentary Environment of the Niger Delta,Offshore	
	(shelf)environment. (Modified after Allen, 1965)	
		18
6.0:	Stratigraphic section of Anambra Basin from Late Cretaceousthrough the Eocene	
	and time equivalent formation in the Niger Delta. (Modified after Reijer et al	., 1997)
		20
7.0:	The Stratigraphic Section of Niger Delta Basin from Cretaceous toQuaternary	
	deposit. (Modified after Reijer et al., 1997)	
		22

8.0:	Depobelts in the Niger Delta Basin (Modified after Doust and Omatsola 1990)	
		25
9.0:	Schematic Diagram of the typical normal fault (Wikipedia, 2011)	
		29
10.0:	Structural Styles present in the Niger Delta, showing the synthetic and the antithe	etic
	faults(Modified after Doustand Omatsola, 1990)	
		30
11.0:	Formation of shale diapers and thrust faults as we move into the Deep offshore	
	(Modified after PetroconsultantsInc, 1996)	
		31
12.0:	Cummulative Distribution Function (Modified after Ogene, 2007)	
		43
13.0:	Cummulative Distributive function Statistical properties (Modified after Ogen	e, 2007)
		44
14.0:	Continuous PDF, $F(x)=df/dx$ (Modified after Ogene, 2007)	
		45
15.0:	Normal Probability distribution (Modified after Ogene, 2007)	
		46
16.0:	Base Map of "X" Field showing the Inlines and the Crosslines	
		53
17.0:	Fault Interpretation of "X" Field	
10.0		54
18.0:	Interpreted Seismic Section showing position of faults FLT_6, FLT_5, FLT_3	

© Obafemi Awolowo University, Ile-Ife, Nigeria

For more information contact ir-help@oauife.edu.ng

and FLT_1

		55
19.0:	Fault mapping on Seismic section	57
20.0:	Well Correlation of "X" Field across the field	56
		58
21.0:	Well Correlation of "X" Field across the field	
22 0 [.]	Synthetic Seismogram from TM-04 well	59
22.0.		60
23.0:	Superimposition of the well picks on the seismic section	
24.0		61
24.0:	Mapping of Interested Horizons	63
25.0a:	Time Structure Map of Seismic Horizon 32	
		64
25.0b:	Depth Structure Map of Seismic Horizon 32	65
26.0a:	Time Structure Map of Seismic Horizon 36	03
	J	66
26.0b:	Depth Structure Map of Seismic Horizon 36	
		67

27.0a: Time Structure Map of Seismic Horizon 40	
	68
27.0b: Depth Structure Map of Seismic Horizon 40	
	69
28.0: Lithology Description with fluid contacts encounteredby the well	
20.0- Lishels Description with fluid contents on constant disc the small	71
29.0a. Ethology Description with fluid contacts encountered by the well	72
29.0b: Lithology Description with fluid contacts Encountered by the well	73
30.0: Grid Construction of three intervals investigated	
	76
31.0: Vshale Model for sand 32	
	77
32.0: Vshale Model for Interval 36	78
33.0: Vshale Model for Interval 40	
	79
34.0: Porosity Model for Interval 32	80
35.0: Porosity Model for Interval 36	81
36.0: Porosity Model for Interval 40	
	82
37.0: Scattered plot of Sw against Porosity	83
38.0: A Tornado Chart showing the influence of each property on STOIIP for int	erval 32

39.0: A Tornado Chart showing the influence of each property on STOIIP for Interval 36

92

40.0: A Tornado Chart showing the influence of each property on STOIIP for Interval 40

93

LIST OF TABLES

TAE	BLE	PAGE
1.0:	Common Probability Distribution Function and their statistical	
	Properties (Modified after Ogene, 2007)	
2.0	Grid dimensions of each reservoir	48
3.0:	VariogramModelling result	/4
4.0:	Summary of average rock properties	84
		86
5.0:	Volumetric estimates obtained from the three intervals	
		89
6.0:	Proxy equation obtained for the three sand intervals using Experimental Design	
	OBHELM.	90

ABSTRACT

Reservoir Modelling and uncertainty evaluation was carried out using a suite of wireline logs of six wells and seismic sections from "X" Field, Niger Delta. This was with a view to develop a model that could be used to evaluate and quantify the uncertainties in reserve estimation.

The base map of the study area, 3D migrated seismic section, composite well logs, checkshot data from six wells (6) wells were used for the study. A combination of Petrel Software, Design Expert and Monte Carlo simulation package were used for the study. Also, three intervals were picked and mapped across the section for the volumetric analysis. These were labeled intervals 32, 36 and 40 for easy recognition. Stratigraphic correlation were carried out across the wells and subsequently seismic to well ties was established. New set of synthetic logs such as the Vshale log, water saturation logs, effective porosity log, total porosity log, facies log and NTG log were generated for all the wells. Possible fluid contacts such as Oil Water Contact (OWC), Gas Oil Contact (GOC), Oil Down To (ODT) within the intervals interpreted were identified. Faults and seismic horizons were mapped across the entire seismic section to generate structure maps both in time and depth domain.

Seismic interpretation of the 400 inlines and 200 cross lines and check shot data for the wells revealed that the predominant structure present is a fault dependent closure. The GR- log suggests a fluvial depositional environment and the deposits are distributary channel sands or tidal bar sands which are widely believed to have good reservoir properties. The volumetric estimates obtained from the tested interval 32 shows that 270 mmbbl of STOIIP, 4 BSCF of

GIIP was found. The interval 36 shows 337 mmbbl of STOIIP, and 5 BSCF of GIIP while interval 40 shows 274 mmbbl of STOIIP and 1 BSCF of GIIP.Water saturation has a regression coefficient of -0.77 and a regression coefficient of -0.02 for formation volume factor. Porosity has a regression coefficient of 0.58, NTG has a regression coefficient of 0.22 and fluid contact has a regression coefficient of 0.11. The regression analysis results, using the Tornado chart revealed that Water Saturation (SW) and Formation Volume Factor (FVF) had negative influence on STOIIP while Porosity, NTG and Fluid contacts have a positive influence on reservoir modelling.

The study concluded that reservoir modelling and uncertainty evaluation plays important role in hydrocarbon exploration especially in the determination of STOIIP.

BHELMIAMOLOW

CHAPTER ONE

INTRODUCTION

1.1 General Introduction

The increase in the demand for hydrocarbon products since the 20th century prompted an intensified exploration for oil and gas accumulation in reservoir rocks. This led to a detailed study of the Niger Delta depocenters after a long period of non-productive search in the Cretaceous sediments of the Benue Trough.

Petroleum in the Niger Delta is produced from sandstones and unconsolidated sands predominantly in the Agbada Formation. The recognized reservoir rocks are Eocene to Pliocene in age, and are often stacked. They range in thickness from less than15 meters to 450 meters with 10% having greater than 45 meters thickness (Evamy*et al.*, 1978). Based on reservoir geometry and quality, the lateral variation in reservoir thickness is strongly controlled by growth faults; with the reservoir thickening towards the fault within the down thrown block (Weber and Daukoru,1975).

The goal of reservoir modelling and uncertainty quantification in the Oil and Gas Industry is particularly to optimize the value of a project, an asset or a reservoir portfolio. Therefore, a paradigm shift from a deterministic thinking to a more amenable approach that appreciates management of subsurface uncertainties that are involved in geological modelling due to the heterogeneity of the complex earth structure is widely embraced.

Accurate estimation of Stock Tank Oil Initially in Place (STOIIP) is therefore an important issue in the oil industry as huge investment is put in place for reservoir evaluation and

field development programmes. Hence, it is necessary to capture the uncertainties involved during reservoir (modelling) study.

The objective of this work is to quantify uncertainties associated with reservoir modelling thereby enabling sound reservoir management decisions at the different stages of reservoir development.

1.2 **Reservoir Modelling**

Reservoir modelling provides a geologically reasonable numerical representation of the geology, for input into the flow simulator, in order to predict the behavior of the subsurface reservoir and fluid flow under various hydrocarbon recovery scenarios. Thus, a reservoir model represents the physical space of the reservoir by an array of discrete cells, delineated by a grid which may be regular or irregular. The array of cells is usually three dimensional, although 1-D and 2-D models are sometimes used. Values for attributes such as porosity, permeability and water saturation are associated with each cell. The value of each attribute is implicitly deemed to apply uniformly throughout the volume of the reservoir represented by a cell.

There are two types of reservoir models, namely: geological model and reservoir simulation model. The former provides static description of the reservoir and the later uses finite difference method to stimulate the flow of fluids within the reservoir, over its production lifetime.

A geological model is constructed at a relatively high (fine) resolution and a coarser grid for reservoir simulation model. Simulation models are usually obtained from geological model by a process of "upscaling" i.e. decreasing the resolution of the grid by multiplying by a factor ratio.

1.3 Uncertainty Analysis

Reservoir geologists are concerned about quantities such as original hydrocarbon in place, reserves and type of recovery process. All these are critical economic factors that play a key role in making important decisions for both the oil producers and the investors at different phases of reservoir characterization. However the certainty of these quantities is questionable(Zhang, 2003).

Uncertainty is defined as "lack of assurance about the truth of a statement or about the exact magnitude of an unknown measurement or number (Ballin et al., 1993). The degree of the uncertainty varies from one variable to another. The uncertainty of a parameter may result from difficulty in directly and accurately measuring the quantity. This is true of the physical reservoir parameter which, at best can only be sampled at various points and subjected to errors caused by the changes that occur during the transfer of rock and its fluid, to laboratory temperature and pressure conditions (Walstrom*et al.*, 1967).

Quantification of these uncertainties and evaluation of the risks associated would improve decision making. However, estimating these uncertainties is complicated because it requires an understanding of both the static reservoir structure and dynamic behaviour during production.

Large number of uncertainties can be identified in the integrated reservoir modelling process. These uncertainties could be classified into five groups depending on the causes of the uncertainty. These are:

• The geophysical data: - These affect the reservoir envelope and its fault system.

- The geological data: These involveuncertainties in reservoir sedimentary and petrophysical model that influence the hydrocarbon pore volume and dynamics of fluid flow.
- Dynamic data: These uncertainties have an enormous impact on the determination of reserves and production profile.
- Reservoir fluiddata: These uncertainties have a substantial impact on the optimization of the processing capacities of oil and gas.