Kinetics and mechanism of aquation of tris (3,4,7,8 - Tetramethyl - 1,10 - Phenanthroline) iron (II) Suphate in aqueous sodium lauryl sulpahate.

Soriyan, Oladega Omopariola,

M.Sc. Chemistry

Department of Chemistry

Obafemi Awolowo University, Ile Ife, Nigeria

Abstract:

In this thesis we report the kinetics and mechanism of the aquation of tris(3, 4, 7, 8-tetramethyl1,10 phenanthroline) Iron(II) sulphate in aqueous micellar solution of Sodium Lauryl sulphate(NaLS).

The aquation is inhibited by NaLS in the presence of H^+ , OH^- , $SO4^{2-}$, $NH4^+$ and tetraethylammonium ion (Et4N*). The inhibition is attributed to the stable association or binding between the complex and the micelle and the decrease in the activity of water in the micellar phase. The partitioning of the substrate between the bulk water solution and the micellar phase is in favour of the latter. The $k\psi$ -[surfactant] profiles are structured due to micellar evolution.

A mechanism which fits kinetic data at low surfactant concentration is proposed. From the rate law obtained and kinetic data observed, the micelle-complex binding constant K1 and micelleacid binding constant K₃ are calculated to be 2.81 x 10⁵ and 13.80 mol⁻¹dm³ respectively in acid Scat chard method, medium. Using K_1 in $3.95 \times 10^5 \text{ mol}^{-1}\text{dm}3$. The decrease in K_1 in acid medium is due to competition for the binding the micelle by the acid proton H^{+} and the

The rate of reaction is a function of equilibrium distribution of all the substrates between the micellar phase and bulk water phase. The evolution of the micelle with respect to the c.m.c. is also function of the nature of the substrate present solution. a Calculated activation parameters suggest strong steric stabilisation of the transition state with respect to enthropy. The magnitudes of activation parameters $\Delta H^{\#}$ and $\Delta S^{\#}$ are functions of the surfactant concentration. $\Delta H^{\#}$ (KJ mol⁻¹) and $\Delta S^{\#}$ (JK⁻¹ mol⁻¹) for the aquation in 0.00, 1.0 x 10⁻⁴ and 2.0 x 10^{-4} mol dm⁻³ NaLS are respectively: 100.40 ± 2.04 , 22.58 ± 0.16 ; 111.48 ± 1.15 , 48.94 ± 0.09 ; 119.19 ± 1.15 , 67.16 ± 0.09 in 1.00M H₂SO₄.

Keywords: Kinetics/ mechanisms/ aqueous micellar solution/ tetraethylammonium ion/ micellar evolution/ surfactant concentration/ Scat chard method/ entropy

Supervisor: Jide Ige.

120p

For more information, please contact ir-help@oauife.edu.ng