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On sufficient condition for starlikeness '
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Abstract

In this paper,we give a condition for starlikeness of the integral oper-

z k i
ator of the form F(z) = / H (fis)) ds.
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1 Introduction

Let A be the class of all analytic functions f(2) defined in the open unit disk
U ={z € C:| z|< 1} and S the subclass of A consisting of univalent, functions

(1) f(z)=z+ Z apz"
k=2

S*={f ES:Re(z;c;S)) >0,z €U},

M,={fe€Ss§: f—(zlzf—(i)aéO,ReJ(a,f;z) >0,z €U}
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where J(a, f;2) = (1 — n)—zf‘;%z +a(l+ zf,”zz))) be the class of starlike and
o — conver functions respectively.

Let p(z) be the class of functions that are regular in U and of the form :
(2) p(z) =1+ Z by 2"
k=1

Furthermore, let h(z) = 12

1—2°
Le%t T be the univalent [5] subclass of A consisting of functions f(z) satisfying
|%§2—1|<1,(z€ U)
Let T;, be the subclass of T for which f*(0) =0 (k = 2,3, ...,n).

Let T,, be the subclass of T, consisting of functions of the form
Jo Hf=1(%@)%d5 satisfying: |z;(fz,)(§) —1] <, (2 € U) for some pu(0 < p < 1).

2 Preliminaries

Theorem 1 [1] Let M and N be analytic in U with M(0) = N(0) = 0. If N(z)
maps onto a many sheeted region which is starlike with respect to the origin
and Re{%’%g%} >0 inU, then Re{?—vﬁ(f)l} >0inU.

Theorem 2 [6] Let f, € T, ,,(2:=1,2,....,k;k € N*) be defined by

(3) fi(z) =2+ Z at 2"
n=2
k
forall i =12, kB €CR{f} >y ady= }i(ll;zﬁz)M(M >
i=1

1,0 < pi < L,k e N*). If|fi(2)]| < M(z € U),i =1,2,...,k then, the integral
operator

* oot Ty fi) 1 0k
(4) Fap(2) = {8 /( | (L
ts untvalent.

Theorem 3 [2] Let h be convez in U and Re{Bh(z) +~} > 0,z € UIf p€
H(U) where H(U) is the class of functions which are analytic in the unit disk,
with p(0) = h(0) and p satisfies the Briot-Bouguet differential subordinations:

p(z) + ﬁl(’;g?—y < h(z),z € U. Then, p(z) < h(z2),z € U.
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3 Main Results

We now give the proof of the following results:

Theorem 4 Let F,(z) be the function in U defined by

k
1 ) = ’ fi(s) % S. Y J
(5) Fo(2) /0 J:Il( —)ads,a € C.

If fi € S* then, F(z) € S* where f; is as in equation (3) above.

Proof. By differentiating (5), we obtain: F'(z) = ]—[le(fizZ )a. Thus,
ZF,(Z) ’C (fi(z))l

F(i) T )

(6) M = zF'(2), N(2) = F(2)

From (5) and (6) we have:

M) _, L G M@ T 128 )
NG~ T FR) NG T (5@
M@ ISR AR -0l S A0S -

Znd - o i(2)y L
N'(z) ITTE (223 ITE ()=

By hypothesis f; € S*. This means that |Z_ijé(_§l — 1] < 1, which implies that
|%§—zl 1] < 1. Thus Re{%}ﬁ} > 0 and by Theorem 1, Re{ Nz 21 > 0. This
implies that Re{ZF (Z)} > 0. Hence F € §*.

Remark 1 The integral in (5) is equivalent to that in (/) of section 2 with
F=1.

Let S={f:U — C}NS. Let F(z) € U be defined by

-y
7
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Theorem 5 Letz € U, € C,Recx > 0 andmgy = MyNs. If F € m,, then F €
S*that is my C S*.

Proof. From (6) above, we have F—(Z)ZL,(Q # 0 and for F' € my, we have

zF'(2)
F(z)

zF'(z)

(8) ReJ(a, f;2) = Re{(1 — ) )

a(l +

for p(z) = 2 A —Z—}%f)z — p(z). This implies that

Flzy 0 p(z)

2F"(2) 2 (2)

) P - e TP
using (7) and (9) in (8), we obtain
(10) ReJ(a, f;2) = Re{(1 — a)p(z) + (v(z—[];;i;) +p(2))}.

Simplifying (10), we obtain ReJ(q, f;2) = Re{p(z) + a(%l%l)}
p(0) + 22 (0) _ 1 and p{(0) = h(0) = 1. Thus, using Theorem 3 with 3 =

p(0)
1andy = 0,we have ;z)(z)—k%’(’z%EZ < h(2) = £, This implies that p(z) < h(2).

That is Re{p(2)} > 0. Thus, Re{*72} > 0. Hence, F € 5*.
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