

On sufficient condition for starlikeness ${ }^{1}$

D. O. Makinde, T. O. Opoola

Abstract

In this paper,we give a condition for starlikeness of the integral oper- ator of the form $F(z)=\int_{0}^{z} \prod_{z=1}^{k}\left(\frac{f_{\imath}(s)}{s}\right)^{\frac{1}{\alpha}} d s$.

2000 Mathematics Subject Classification:30C45

Key words and phrases: Starlike, Convex, Briot-Bouquet subordination.

1 Introduction

Let A be the class of all analytic functions $f(z)$ defined in the open unit disk $U=\{z \in C:|z|<1\}$ and S the subclass of A consisting of univalent functions

$$
\begin{array}{r}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}\\
S^{*}=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in U\right\}, \\
M_{\alpha}=\left\{f \in S: \frac{f(z) f^{\prime}(z)}{z} \neq 0, \operatorname{Re} J(\alpha, f ; z)>0, z \in U\right\}
\end{array}
$$

[^0]where $J(\alpha, f ; z)=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)$ be the class of starlike and α-convex functions respectively.
Let $p(z)$ be the class of functions that are regular in U and of the form :
\[

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} b_{k} z^{k} \tag{2}
\end{equation*}
$$

\]

Furthermore, let $h(z)=\frac{1+z}{1-z}$.
Let T be the univalent [5] subclass of A consisting of functions $f(z)$ satisfying $\left|\frac{z^{2} f^{\prime}(z)}{f(z)^{2}}-1\right|<1,(z \in U)$
Let T_{n} be the subclass of T for which $f^{k}(0)=0(k=2,3, \ldots, n)$.
Let $T_{n, \mu}$ be the subclass of T_{n} consisting of functions of the form $\int_{0}^{z} \prod_{\imath=1}^{k}\left(\frac{f_{\imath}(s)}{s}\right)^{\frac{1}{\alpha}} d s$ satisfying: $\left|\frac{z^{2} f^{\prime}(z)}{f(z)^{2}}-1\right|<\mu,(z \in U)$ for some $\mu(0<\mu \leq 1)$.

2 Preliminaries

Theorem 1 [1] Let M and N be analytic in U with $M(0)=N(0)=0$. If $N(z)$ maps onto a many sheeted region which is starlike with respect to the origin and $\operatorname{Re}\left\{\frac{M^{\prime}(z)}{N^{\prime}(z)}\right\}>0$ in U, then $\operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\}>0$ in. U.

Theorem 2 [6] Let $f_{2} \in T_{n, t_{2}}\left(\imath=1,2, \ldots, k ; k \in N^{*}\right)$ be defined by

$$
\begin{equation*}
f_{i}(z)=z+\sum_{n=2}^{\infty} a_{n}^{i} z^{n} \tag{3}
\end{equation*}
$$

for all $i=1,2, \ldots, k ; \alpha, \beta \in \mathcal{C} ; R\{\beta\} \geq \gamma$ and $\gamma=\sum_{i=1}^{k} \frac{1+\left(1+\mu_{i}\right) M}{|\alpha|}(M \geq$ $\left.1,0<\mu_{i}<1, k \in N^{*}\right)$. If $\left|f_{i}(z)\right| \leq M(z \in U), i=1,2, \ldots, k$ then, the integral operator

$$
\begin{equation*}
F_{\alpha, \beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} \prod_{i=1}^{k}\left(\frac{f_{i}(t)}{t}\right)^{\frac{1}{\alpha}} d t\right\}^{\frac{1}{\beta}} \tag{4}
\end{equation*}
$$

is univalent.
Theorem 3 [2] Let h be convex in, U and $\operatorname{Re}\{\beta h(z)+\gamma\}>0, z \in U$ If $p \in$ $H(U)$ where $H(U)$ is the class of functions which are analytic in the unit disk, with $p(0)=h(0)$ and p satisfies the Briot-Bouquet differential subordinations: $p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), z \in U$. Then, $p(z) \prec h(z), z \in U$.

3 Main Results

We now give the proof of the following results:
Theorem 4 Let $F_{\alpha}(z)$ be the function in U defined by

$$
\begin{equation*}
F_{\alpha}(z)=\int_{0}^{z} \prod_{i=1}^{k}\left(\frac{f_{i}(s)}{s}\right)^{\frac{1}{\alpha}} d s, \alpha \in C \tag{5}
\end{equation*}
$$

If $f_{i} \in S^{*}$ then, $F(z) \in S^{*}$ where f_{i} is as in equation (3) above.
Proof. By differentiating (5), we obtain: $F^{\prime}(z)=\prod_{i=1}^{k}\left(\frac{f_{i}(z)}{z}\right)^{\frac{1}{\alpha}}$. Thus, $\frac{z F^{\prime}(z)}{F(z)}=\frac{\prod_{i=1}^{k}\left(\frac{f_{i}(z)}{z}\right)^{\frac{1}{\alpha}}}{\text { Let }^{\int_{0}^{z} \prod_{i=1}^{k}\left(\frac{f i(s)}{s}\right)^{\frac{1}{\alpha}} d s} .}$

$$
\begin{equation*}
M=z F^{\prime}(z), N(z)=F(z) \tag{6}
\end{equation*}
$$

From (5) and (6) we have:

$$
\begin{gathered}
\frac{M^{\prime}(z)}{N^{\prime}(z)}=1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}, \frac{M^{\prime}(z)}{N^{\prime}(z)}=1+\frac{\left.\sum_{i=1}^{k} \frac{1}{\alpha} \frac{z f_{j}^{\prime}(z)}{f(z)}-1\right)}{\prod_{i=1}^{k}\left(\frac{f_{i}(z)}{z}\right)^{\frac{1}{\alpha}}} \\
\left|\frac{M^{\prime}(z)}{N^{\prime}(z)}-1\right|=\frac{\left|\sum_{i=1}^{k} \frac{1}{\alpha}\left(\frac{z f_{i}^{\prime}(z)}{f(z)}-1\right)\right|}{\left|\prod_{i=1}^{k}\left(\frac{f_{i}(z)}{z}\right)^{\frac{1}{\alpha}}\right|} \leq \frac{\sum_{i=1}^{k}\left|\frac{1}{\alpha}\right|\left|\frac{z f_{i}^{\prime}(z)}{f(z)}-1\right|}{\left|\prod_{i=1}^{k}\left(\frac{f_{i}(z)}{z}\right)^{\frac{1}{\alpha}}\right|}
\end{gathered}
$$

By hypothesis $f_{i} \in S^{*}$. This means that $\left|\frac{z f_{i}^{\prime}(z)}{f(z)}-1\right|<1$, which implies that $\left|\frac{M^{\prime}(z)}{N^{\prime}(z)}-1\right|<1$. Thus $\operatorname{Re}\left\{\frac{M^{\prime}(z)}{N^{\prime}(z)}\right\}>0$ and by Theorem $1, \operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\}>0$. This implies that $\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}>0$. Hence $F \in S^{*}$.

Remark 1 The integral in (5) is equivalent to that in (4) of section 2 with $\beta=1$.

Let $S=\{f: U \rightarrow C\} \cap S$. Let $F(z) \in U$ be defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z} \prod_{i=1}^{k}\left(\frac{f_{i}(s)}{s}\right)^{\frac{1}{\alpha}} d s \tag{7}
\end{equation*}
$$

Theorem 5 Let $z \in U, \alpha \in C, \operatorname{Re} \alpha>0$ and $m_{\alpha}=M_{\alpha} \cap$. If $F \in m_{\alpha}$, then $F \in$ S^{*} that is $m_{\alpha} \subset S^{*}$.

Proof. From (6) above, we have $\frac{F(z) F^{\prime}(z)}{z} \neq 0$ and for $F \in m_{\alpha}$, we have

$$
\begin{equation*}
\operatorname{Re} J(\alpha, f ; z)=\operatorname{Re}\left\{(1-\alpha) \frac{z F^{\prime}(z)}{F(z)}+\alpha\left(1+\frac{z F^{\prime}(z)}{F(z)}\right)\right\} \tag{8}
\end{equation*}
$$

for $p(z)=\frac{z F^{\prime}(z)}{F(z)}, \frac{z p^{\prime}(z)}{p(z)}=1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-p(z)$. This implies that

$$
\begin{equation*}
1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=\frac{z p^{\prime}(z)}{p(z)}+p(z) \tag{9}
\end{equation*}
$$

using (7) and (9) in (8), we obtain

$$
\begin{equation*}
\operatorname{Re} J(\alpha, f ; z)=\operatorname{Re}\left\{(1-\alpha) p(z)+\alpha\left(\frac{z p^{\prime}(z)}{p(z)}+p(z)\right)\right\} . \tag{10}
\end{equation*}
$$

Simplifying (10), we obtain $\operatorname{Re} J(\alpha, f ; z)=\operatorname{Re}\left\{p(z)+\alpha\left(\frac{z p^{\prime}(z)}{p(z)}\right)\right\}$ $p(0)+\frac{\alpha z p^{\prime}(0)}{p(0)}=1$ and $p(0)=h(0)=1$. Thus, using Theorem 3 with $\beta=$ 1 and $\gamma=0$, we have $p(z)+\frac{\alpha z p^{\prime}(z)}{p(z)}<h(z)=\frac{1+z}{1-z}$. This implies that $p(z) \prec h(z)$. That is $\operatorname{Re}\{p(z)\}>0$. Thus, $\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}>0$. Hence, $F \in S^{*}$.

References

[1] S.A. Halim, On a class of Analytic Functions involing, Tamkang, Journal of Mathematics vol. 23 Number 1, Spring 1992.
[2] M. Acu and S. Owa, On some subclasses of univalent function, Journal of inequalities in pure and applied mathematics, vol. 6,(3) art 70, 2005.
[3] S. Kanas and F. Ronning, Uniformly Starlike and convex functions and other related classes of univalent functions, Ann University, Marie CurieSklodowska Section A, 53, 1999, 95-105.
[4] S.S. Miller and P.T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, Journal of Differential equations, 56, 1985, 297-309.
[5] S. Ozaki and M.Nunokawa, The Schwarzian derivative and Univalent functions,, Pro. Ameri.Math. Soc., 33, 1972, 302-394.
[6] N. Seenivasagan, Sufficient Conditions for Univalence, Applied Mathematics E-Notes, 8, 2008, 30-35.

D. O. Makinde

Department of Mathematics
Obafemi Awolowo University
Ile Ife 220005, Nigeria
e-mail: dmakinde@oauife.edu.ng, makindemyiuv@yahoo.com

Timothy O. Opoola

University of Ilorin
Mathematics
Department of Mathematics, University of Ilorin, Ilorin,Nigeria
e-mail: opoolato@unilorin.edu.ng

[^0]: ${ }^{1}$ Received 14 February, 2009
 Accepted for publication (in revised form) 17 March, 2009

