OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE

Name of Examination: 2010/2011 Rain Semester Examination

Subject:
Time Allowed:

SSC 202: Statistical Methods and Sources II 2 hours

IN YOUR INIEREST, READ THE FOLLOWINGINSTRUCTIONS VERY CAREFULY:

a) You are required to answer all auestions.
b) Use only HB pencils to shade your answers
c) Shade the little dark boxes at the four corners of your OMr shēef
d) Shade vour registration number correctly. For example, if your number is DSS/1992/121, you must correctly shade all the 12 characters, i.e. shade the first three letters representing your department (DSS), shade the slash (//), then shade the four numbers representing your year of admission (1992), shade the second slash (/), and then shade the last three numbers (121).
e) Write and Shade vour names correctly. The computer only needs your correct registration number to be able to record your score, however, if another candidate mistakenly writes and shades your number on his/her answer sheet, the only way to identify you is by checking the names written and shaded. So be wise!
f) Make sure you sign the attendance list before the end of the examination and make sure you submit your answer script to an invigilator.
g) Statistical tables are provided at the end of the questions.

1. Whicult indollowing statements is wrong with respect to index numbers?
(a) The base period should not be too far from the current period
(b) The base period is the period with which comparisons are made
(c) The base period should be a period of normal economic activities
(d) None of the above

2, Which of these statements about the Consumer Price Index (CPI) is correct?
(a) CPI allows consumers to determine the effect of price increases on thei purchasing power
(b) CPI is a yardstick for revising wages, pensions, alimony payments, etc
(c) CPI is an economic indicator of the rate of inflation in a country
(d) All of the above
3. A value index measures changes in
(a) the price but not the quantities involved
(b) the quantity but not the price involved
(c) both the price and the quantity involved
(d) none of the above
4. The index that has the tendency to overweight goods whose prices increase is
(a) Laspeyres
(b) Paasche
(c) Marshall-Edgeworth
(d) Dow Jones
5. The index that has the tendency to overweight goods whose prices decline is
(a) Laspeyres
(b) Paasche
(c) Marshall-Edgeworth
(d) Dow Jones
6. Using Paasche Index,
(a) it is possible to attribute changes in the index to changes in price
(b) it is impossible to attribute changes in the index to changes in price
(c) the same quantities are used each year
(d) all of the above

2007
Commodities
A
B
Price 43 6 48 39 36 58 68
43
64
48
39
36
58
68 Quantity 2010

Price	Quantity
51	61
62	52
45	56
25	47
55	65
85	22
70	45

7. Compute the simple aggregate price index and the value indexes
(a) $110.39 \& 94.31$
(b) $110.17 \& 86.83$
(c) $109.39 \& 109.45$
(d) $108.61 \& 85.60$
8. Compute the Paasche price index and Paasche quantity index
(a) $110.39 \& 94.31$
(b) $110.17 \& 86.83$
(c) $109.39 \& 109.45$ (d) $108.61 \& 85.60$
9. Compute the Fisher Price Index and Marshall-Edgeworth price index
(a) $110.39 \& 94.31$
(b) $110.17 \& 86.83$
(c) $109.39 \& 109.45$
(d) $108.61 \& 85.60$
10. Compute the Laspeyres' price and quantity indexes
(a) 110.39 \& 94.31 (b) $110.17 \& 86.83$ (c) $109.39 \& 109.45$ (d) $108.61 \& 85.60$
11. The arithmetic and the geometric means of Laspeyre's and Paasche's indices are
(a) Fisher's Ideal index and Bowley's index respectively
(b)Bowley's index and Fishers's Ideal index respectively
(c) Bowley and Marshal-Edgeworth indices respectively
(d) Fisher's ideal index and Marshall-Edgeworth index respectively
12. In the estimation of value index, total value is
(a) The quantity of the commodities consumed in the base year multiplied by the prices in the current year
(b) The price of the commodity multiplied by the quantity consumed
(c) The price in the base year multiplied by the quantities in the current year
(d)Changes in the volume or quantity produced in all years
13. Which of the following is not a characteristic of index numbers?
(a) Index numbers are always geometric means
(b) Index numbers are expressed in percentage.
Δ An index number can be defined as
(a) A statistical variable designed to show measures in related functions or group of related functions with respect to time, geographic location or other characteristic
(b) A statistical change in alpha-numeric variables over time, geographic location or other characteristic
(c) A statistical measure designed to show changes in variable or a group of related variables with respect to time, geographic location or other characteristic
(d) A statistical measure to show changes in consumables or a group of related consumables with respect to time, geographic location or other characteristic
14. Fisher's quantity index is given as:
(a) $\sqrt{\frac{\sum q_{1} p_{0}}{\sum q_{0} p_{0}} \times \frac{\sum q_{1} p_{1}}{\sum q_{0} p_{1}}} \times 100$
b) $\sqrt{\frac{L+P}{2}}$
c) $\frac{L+P}{2}$
d) none of the above
15. Bowley's price index is given as
(a) $\sqrt{\frac{\sum q_{1} p_{0}}{\sum q_{0} p_{0}} \times \frac{\sum q_{1} p_{1}}{\sum q_{0} p_{1}}} \times 100$
b) $\sqrt{\frac{L+P}{2}}$
C) $\frac{L+P}{2}$
d) none of the above
(for questions 17-23) A new poultry feed was tested on the chicken on a farm. The following table gives the results of the observations made:

Days of feed	i	3	5	7	9	11	13	15	17	19
Average weight of chicken (kg)	1.2	1.5	1.4	1.8	1.6	2.0	2.1	1.7	2.3	2.4

17. What is the dependent variable (Y) ?
(a) Days of feed
(b) Average weight of chickens
(c) either of the twe variables (d) no answer
18. From your regression of Y on X, what is the value of the intercept?
(a) 1.2180
(b) 1.2118
(c) 1.2133
(d) 1.2818
19. From your regression of Y on X, what is the value of the slope?
(a) 0.0528
(b) 0.0572
(c) 0.0582
(d) 0.0532
20. What would be the average weight of the chicken after 22 days of feeding?
(a) 2.4156
(b) 2.4384
(c) 2.5160
(d) 2.4984

What would be the average weight of the chicken after 30 days of feeding?
(a) 2.9696
(b) 2.9640
(c) 2.5160
(d) 2.4984
22 What is $\sum X Y$?
(a) 134.03
(b) 193.2
(c) 199.2
(d) 195.4

For questions 24-34): The table below shows the scores (Y) of 12 students in SSC202 mid-semester test, the number of hours spent on studying per week $\left(\mathrm{X}_{1}\right)$ and the number of times the student attended the class $\left(\mathrm{X}_{2}\right)$.

Y	X_{1}	X_{2}
20	8	
15	6	
22	10	3
12	7	
12	5	
18	9	
10	4	
15	10	
14	6	
17	8	
11	5	
14	7	

Obtain $\sum X_{1}^{2}$
(a) 110
(b) 253
(c) 533
(d) 645

What is $\sum X_{1} X_{2}$
(a) 110
(b) 253
(c) 533
(d) 645
(a) 110
(b) 253
(c) 533
(d) 645
(a) 110
(b) 253
(c) 533
(d) 645
(a) 2532
(b) 2848
(c) 2884
(d) 2684
(a) 1.3545
(b) 1.3575
(c) 1.3565
(d) 1.5355
(a) 0.4753
(b) -6.6545
(c) 0.4321
(d) -6.2344

What is the value of the intercept? (a) 4.0391
(b) 4.0447
(c) 4.1666
(d) 4.3255

What is the value of Y if $X_{1}=11$ and $X_{2}=5$?
(a) 14.4132
(b) -14.4132
(c) -21.3427 (d) 21.3427

What is the value of Y if $X_{1}=13$ and $X_{2}=4$?
(a) 235804
(b) -24.8815
(c) 34.3244
(d) 4.1919
What is \mathbf{R}^{2} ?
(a) 0.1726
(b) 0.6604
(c) 0.6516
(d) 0.6060

Generally, \qquad index usually overweight while \qquad index usually nderweight:
ai) Laspeyre, Paasche (b) Paasche, Laspeyre
(c) SAPI, SAQI
(c) no answer

Suppose we wish to test whether a population mean is significantly larger or smaller than 10. We take a sample and find \bar{x} to be 8 . What should our alternative hypothesis be?

erforming the test.

type I error
type II error
owing information to answer questions 45 - 48 .
librarian suspects that the average number of books checked out to each r visit has changed recently. In the past, an average of 3.4 books was t. However, a recent sample of 23 students averaged 4.3 books per visit, dard deviation of 1.5 books.
h distribution is appropriate for this test (a) \boldsymbol{z} value (B) \mathbf{t} value (c) \boldsymbol{x}^{2} value ulated value (a) 2.90 (b) 2.9878 (c) 2.8775 (d) 2.88 (e) cannot be determined information given.
lated value (a) 2.58 (b) 2.85 (c) 2.819 (d) 2.80 (d) 2.825
e. 01 level of significance, has the average checkout changed?
)The average has not changed at 0.01 level of significance
) The average has changed by chance) The average has changed at 0.01 level of significance.) The calculated value is above tabulated value.)c and d
stions 49 - 57: State inspectors, investigating charges that a soft-drink company underfills its product, have sampled 200 bottles and found the contents to be 31.7 fluid ounces. The bottles are advertised to contain 32 ices. The population standard deviation is known to be 1.5 fluid ounces. he inspectors conclude, at the 3 percent significance level, that the bottles gunderfilled?
latedvalue equal (a) -2.17 (b) -2.33 (c) -1.96 (d) -1.88 (e) None of these.
dated value equal (a) 2.8 (b)2.83 (c) 2.8284 (d) 2.828

Nor questions 52 - 54: Allen Distributing Company hypothesizes that a phone call is more effective than a letter in speeding up collection of bank accounts. Two groups of bank accounts were contacted, one by each method, and the length of time between mailing the letter and making the call and the receipt of payment was recorded:

Method
Used

Letter	10	8	9	11	11	14	10
Phonecall	7	$\mathbf{4}$	5	$\mathbf{4}$	8	6	9

At $\mathrm{a}=0.025$, should Allen conclude that bank accounts are collectedmore $4 \ldots$...kly with calls than with letters?
52. Tabulated value is (a) 2.58 (b) 2.33 (c) 2.68 (d) 2.18
53. Calculated value is (a) 4.1738 (b) 4.5084 (c) 4.17 (d) 4.51 (e) 4.174
54. At $\mathbf{a}=0.025$, Allen can conclude that (a) calculated value is greater that tabulated value (b) calls more quicker than letters (c) letters more quickly than calls (d) reject the null hypothesis (e) a and b only.
55. A chi-square value can never be negative because:
(a) Differences between expected and observed frequencies are squared.
(b)A negative value would mean that the observed frequencies were negative.
(c) The absolute value of the differences is computed.
(d) None of these
(e) a and b but not c.
56. Assume that a chi-square test is to be performed on a contingency table with 4 rows and 4 columns. How many degrees of freedom should be used?(a) 16 (b) 8 (c) 9 (d) 6
57. When performing a chi-square hypothesis test, what happens whe xpected frequencies in several cell are too small?
(a) The value of $x^{2}=$ will be overestimated.
(b) The null hypothesis will be more likely to be rejected than it should be.
(c) The degrees of freedom are greatly reduced.
(d) None of these.
(e) a and b but not c.

Nor questions 52-54: Allen Distributing Company hypothesizes that a phone call is more effective than a letter in speeding up collection of bank accounts. Two groups of bank accounts were contacted, one by each method, and the length of time between mailing the letter and making the call and the receipt of payment was recorded:

Method
Used

Letter	10	8	9	11	11	14	10
Phone call	7	4	5	4	8	6	9

$a=0.025$, should Allen conclude that bank accounts are collectedmore $4 . .$. kly with Is than with letters?

Tabulated value is (a) 2.58 (b) 2.33 (c) $\mathbf{2 . 6 8}$ (d) $\mathbf{2 . 1 8}$
Calculated value is (a) 4.1738 (b) 4.5084 (c) 4.17 (d) 4.51 (e) 4.174
At $\mathrm{a}=0.025$, Allen can conclude that (a) calculated value is greater that tabulated value (b) calls more quicker than letters (c) letters more quickly than calls (d) reject the null hypothesis (e) a and b only.
A chi-square value can never be negative because:
(a) Differences between expected and observed frequencies are squared.
(b) A negative value would mean that the observed frequencies were negative.
(c) The absolutevalue of the differences is computed.
(d) None of these
(e) a and b but not c

Assume that a chi-square test is to be performed on a contingency table with 4 rows and $\mathbf{4}$ columns. How many degrees of freedom should be used? (a) 16 (b) 8 (c) 9 (d) 6
When performing a chi-square hypothesis test, what happens wht xpected frequencies in several cell are too small?
(a) The value of $x^{2}=$ will be overestimated.
(b) The null hypothesis will be more likely to be rejected than it should be.
(c) The degrees of freedom are greatly reduced.,'"
(d) None of these.
(e) a and b but not c .

Doose you are comparing 5 groups exposed to collorl mods of
weatment and have taken a sample of size 10 from each group. You have lculáted \bar{x} for each sample. How could you now calculate the grand mean?
(ia) Multiply each sample mean by $\frac{1}{5}$ and add these values. Then divide this rum by 50 .
(b) Add the 5 sample means and divide by 50 .
(c) Add the 5 sample means and multiply by $\frac{1}{5}$.
(d) Add the 5 sample means.
(e) None of these.

To be considered a time series, a group of statistical information must have accumulated at regular intervals. (a) False (b) True (c) Unsure (d) none is correct.
Suppose you were considering a time series of data for the quarters of 2001 and 2002. The third quarter of 2002 would be coded as (a) 2 (b) 3 (c) 5 (d) 6 (e) none of these
A time series of annual data can contain which of the following components?
) Secular trend (b) Cyclical fluctuation (c) Seasonal variation (d) All of these (e) a and b but not c.
Suppose that the linear equation $\hat{Y}=10+3 x$ describes well an annual time series for 1988-1994. If the actual value of Y for 1991 is 8 , what is the percent of trend for 1991?
125% (b) 112.5% (c) 90% (d) 80%
A time series for the years $1993-2004$ had the following relative cyclical residuals, in chorological order: $-1 \%,-2 \%, 1 \%, 2 \%,-1 \%,-2 \%, 1 \%, 2 \%,-1 \%,-2 \%$, 1% 2\%. The relative cyclical residuals for 1995 should be:
3% (b) -1% (c) -2% (d) Cannot be determined from information given
Assume that you have been given quarterly sales data for a 5 -year period. To use the ratio-to-moving-average method of computing a seasonal index, your first step would be:
(a) Compute the 4-quarter moving average.
(b)Discard highest and lowest values of each quarter.
(c) Calculate the 4-quarter moving total.
(d) None of these.

If a time series has an even number of years, and we use coding, then each
istan-below are the simultaneous bills of two complementary items purchas Alfa Mus̃a from "Manfrom Katsina" shop. Use the table to solve questions 66

$\because \rightarrow$| X | 55 | 38 | 69 | 75 | 28 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Y | 56 | 95 | 68 | 33 | 80 |

66. Calculate Correlation Coefficient (r) Using Spearman's rank corre coefficient method. (a.) 0 . (b). 0.6 (c). - $0.8{ }^{\sim}$
67. Ranking the two bills in "ascending ranking order", what is the value c summation of differences (d) of the two ranking?
(a.) 1
(b). 2 (c). 0 (d) -0
68. What is the value of the summation of the square of the differences $\left(d^{2}\right)$
(a). 136
(b) 63
(c) 36
(d) 316
69. What is total summation of the two bills x and y ?
a 759
b. 597
c. 957
d. 579

70 If a variable X in a relationship decreases as variable Y increases, the vari are (a) a scatter relationship (b) Positively correlated (c) Nega correlated
(d) a non-relationship
71. Correlation describes how well a linear or other equation describpe or exp the relationshipbetween variables
a. True
b. False
c. Neither true nor false
d. All of the above
72. Correlation will be perfectly negative if an Increase in one variab accompanied by a decrease, in a perfectly definite ratio, in the other variabl

The value of the shadod arca is tabulated. To obtain an area to the left of Z, add .5 to the tabulated value.

302
Taine A3
Percentage points of the normal distribution.
The value of Z correspooding to shaded area p in $\%$ is tabulated.

P	Z								
50	0.0000	5.0	1.6449	3.0	1.8908	2.0	2.0537	1.0	2.3263
45	0.1237	4.8	1.5646	2.9	1.8957	1.9	2.0749	0.9	2.3656
40	0.2533	4.6	1.6849	2.8	1.9110	1.8	2.0969	0.8	2.4089
35	0.3833	4.4	1.7060	2.7	1.9268	1.3	1.1201	0.7	2.4573
30	0.5244	4.2	1.7279	2.6	1.9431	1.6	2.1444	0.6	2.5121
25	0.6745	4.0	1.7507	2.5	1.9600	1.5	2.1701	0.5	2.5758
20	0.8416	3.8	1.7744	2.4	1.9774	1.4	2.1973	0.4	26521
15	1.0364	3.6	1.7991	2.3	1.9954	1.3	2.2262	0.3	2.7478
10	1.2816	3.4	1.8250	2.2	2.0141	1.2	2.2771	0.2	2.8782
05	1.6449	3.2	1.8522	2.1	20335	1.1	2.2904	0.1	3.0902

Table A4
Percestage pointr of the 1 -distribution.

P	5	2.5	1.25	. 5
1.	6.3138	12.706	25.452	63.657
2.	2.9200	4.3027	6.2053	9.9248
3.	2.3534	3.1825	4.1765	5.8409
4.	2.1318	2.7764	3.4954	4.6041
5.	2.0150	2.5706	3.1634	4.0321
6.	1.9432	2.4469	2.9687	3.7074
7.	1.8946	2.1646	2.8412	3.4995
8.	1.8595	2.1060	2.7515	3.3554
9.	1.8331	2.2622	2.6850	3.2498
10.	1.8125	22281	2.6338	3.1693
11.	1.7959	2.2010	2.5931	3.1058
12.	1.7823	2.1788	2.5600	3.0545
13.	1.7709	2.1604	2.5326	3.0123
14.	1.7613	21448	2.5096	2.9768
15.	1.7530	2.1315	2.4899	2.9467
16.	1.7459	2.1199	2.4729	2.9208
17.	1.7396	2.1098	2.4581	2.8982
18.	1.7341	2.1009	2.4450	2.8784
19.	1.7291	2.0930	2.4334	2.8609
20.	1.1247	2.0860	2.4211	2.8453
21.	1.7207	3.0796	2.4138	2.8314
22.	1.7171	2.0739	2.4055	2.8188
23.	1.7139	2.0687	2.3979	2.8073
24.	1.7109	2.0639	2.3910	2.7969
25.	1,7081	2.0595	2.3846	2.7874
26.	1.7056	2.0555	2.3788	2.1787
27.	1.7033	2.0518	2.3734	2.7167
28.	$1.701!$	2.0484	2.3685	2.7633
29.	1.6991	2.0452	2.3638	2.7564
30.	1.6973	2.0423	2.3596	2.7500
40.	1.6839	2.0211	23289	2.7045
60.	1.6707	2.0003	2.2991	2.6603
120.	1.6577	1.9799	2.2699	2.6174
∞	1.6449	1.9600	22414	2.5758

Tible A4. Percentage points of the t-diatribytion.
The tabulated values are the 1 -values If corresponding to the shaded percentage areas P. The v-column gives
 the appropriate degrocs of frgefom.

	0.995	0.975	0.050	0.025	0.010	0.005	2
	0.043927 0.010025	0.039821	3.84146				
3	0.010025 0.071721	0.050636 0.215795	5.99147	7.37776	6.63490 9.21014	7.87944 10.5966	
4	0.01721 0.206990	0.215795	7.81473	9.34840	11.3449	12.8381	
5	0.411740	0.48419	9.48773	11.1433	13.2767	14.8002	
6	0.675727	1.837347	11.0705 12.5916	12.8325	15.0863	16.7496	
7	0.989265	1.68987	12.5916	14.4494 16.0128	16.8119	18.5476	
8 8	1.344419	2.17973	14.0671 15.5073	16.0128 17.5346	18,4753	20.2777	
9	1.734926	270039	16.9190	17.5346 19.0228	20.0902 21.6650	21.9550	
10	2.15585					23,5893	
11	2.60321	3.246979	18.3070 19.6751	20,4831 21.9200	23.2093	25.1832	
12	3.07382	4,40379	21.0261	21.9200 23.3367	24.7250	26.7509	
13	3.56503 4.07468	5.00874	2.0261 22.3621	23.3367 24.7356	26.2170 27.6883	29.2965	
14	4.07468	5.62872	23.6848	26.1190	27.6883 29.1413	$\begin{aligned} & 29.8194 \\ & 31.3193 \end{aligned}$	
15	4.60094 5.14724	6.26214	24.9958	27.4884			
17	5.14224 5.69724	6.90766 7.56418	26.2962	28.8454	31.9999	328013	
18	6.2648t	7,56418 8.23075	275871 28.8693	30.1910	33.4087	35,7185	
19	6.84398	8.90655	28.8693 30.1435	31.5264 32.8521	34.9053 36.1908	37.1564	
				32.8523	36.1908	38.5822	
21	7.43136 8.03366	9.59083	31.4104	34.1696	37.5662		
22	8.03366 8.64272	10.28293 10.9827	32.6705	35.4789	38.9321	39.9968	
23	9.26042	10.9823	33.9244 351725	36.7807	40.2894	42.7956	
24	9.88623	11.6885 12.4001	35.1725 36.4151	38.0757 39.3641	41.6384	44.1813	
			36.4151	39.3641	42.9798	45.5585	
25	10.5197	13.1197	37.6535				
26 27	11.1603 11.8076	13.8439	38.8852	41.9232	44,3141	46.9278	
28	11.8076 12.4613	14.5733 15.3079	40.1133	43.1944	46.9630	49.2899	
30	13.7867				49.5879	52.3356	
40	20,706.5	16.7908	43.7729	46.9792	50.8922		
50	27.9907	+3.4331	55.7585 67.5048 70.0819	59,3417	63.6907	66.7659	
60	$35.53+6$	40.4817	67.5048 79.0819	71.4202 83.2976	76.1539	79,4900	4
				83.2976	88,3794	91.9917	
70 80	43.2752 51.1720	48.7576	90.5312	95,0231			
90	51.1720 59.1963 67.3276		101.879	106.629	112.329	104.215 116.321	
100	67.3276	65.6466 74.2219	113.145 124.342	118.136 129.561	124.116	128.299	
			124.342	129.561	135.807	140.169	

