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ABSTRACT ‘
In this paper, we investigated the Hadamard product of the integral operator of the form

R = | Tlwor
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INTRODUCTION
Let H(u) denote the class of all analytic functions in the unit disk U = {z € C:|z| < 1}.

A is the set of analytic fimctions f € H(u) suchthat f(z) =z + Z a,z", z€l and S

n=2

is the set of functions f € A such that f is univalent in I/_ S” is the class of functions in the unit

disk defined by $* = {f € H): f(0) = f'(0)—1=0,R, {1 +z—;-(—g2} >0,z€ u}

S¢ is the class of functions in U denoted by

§¢ = {f € H(u):f(0) = f'(0)—1=0,R, {1 + zf"(z)} >0,z€ u}
f'(2)

§* and S§¢ are the class of starlike and convex functions with respect to the origin
respectively. For the complex valued functions, let

Correspondence: Department of Mathematics, Obafemi Awolowo University, Ile Ife, 220005, Osun State,
Nigeria. E-mail: domakinde.comp@gmail.com, dmakinde@oauife.edu.ng




D. 0. MAKINDE

oo [ea]
A\l
L@ =2+ ", fo@) =2+ > e
n=2 n=2

The Hadamard product is given by

firfh=f@)=z+ Z gnliynZ" -
n=2

In 1973, Kudryashov investigated the maximum value of M such that the inequality

zf"(2)
<M (§))
f'(2)
implies that f is univalent in U. He showed that if M = 3:05 ... where M is the solution of
the equations S8[M(M — 2)%}/2 — 3(3 — M)® =12 then f is univalent in U. Also,
D. Breaz, S. Owa and N. Breaz considered the integral operator

Fopayn (2) = f (F1©)™ ... (F1©)™dt
(1]
showed that

zfi"(z)
fi@)
is starlike where M, = 2:8329 ... is the smallest root of equation xsinx + cosx = 1/e.

Furthermore, D. O. Makinde investigated the univalence, starlikeness and convexity of
the integral operator

z
xp+Hiyx
Fry+iyyx2+tyg,xntiyn =I l—l(ﬂ(t))
(}
k=1

<M 2)

We now present our main results.

1. MAIN RESULTS

Theorem I: Let0 < a < 1andlet

z(fik * f21)" (2)
(fix * fa)' (2)

then the integral operator

<M,
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Proof:
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Pt Faa = [ [ [(Gia oy @) ae
k=1

is univalent, 0 <na < 1,k €1,n,n € N.

Let

 (Fra* Fod"(2)
H@ = e v HaY @)
But

Fia * )@ = | [((e* ) @)"
k=1

= ((fir* f21) @) ((faz * f22) @)" e ((fin * for)' @)”

Thus, for k = 2 we obtain

(Fia * F3,)"'(2) = ﬂ((fu * fzn)'(z))a_x((ﬁl b ﬁl)"(z)((ﬂi * fn)'(z))a:i
H(fir = o) @) a((fiz * ) @) ((fiz * F2)' @)

Simplify we obtain

2

, Y12 *Faa) (2) (Fiq * F2q)"'(2) —a ) Var )z, (ke * f2)(2)
(Fia * F24)'(2) =t (fax *fzk)(z)
Thus, inductively we obtain

Fra* Foa)' @) _ N G * f)(2)

TR R @l Gt )@

(Fia * Fo0)"@) _ 2 (fu * 31)(@)
(Fia * o)’ (Z) — (flk * for)(2)
< naM

<M

by the hypothesis that 0 < na < 1
Thus, by (2) the integral operator



Corollary:

Theorem 2.

Proof:
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Fia* Faa@ = [ [ [(Gi» @)
0 k=1

is univalent U.
This concludes the proof of Theorem 1.
Leta € C,la] <1 andlet

|z(fax * f21)" (2|
I (fir * far)'(2) ' .

then the integral operator

Fla*FZa;’j
0

is univalent.

[ [+ frr)ae
1

k=

Leta € R, & > 0. Suppose (fy * fo1)(2) isconvex forallk € {1,2, ...

Then the integral operator

Fua* Fra@ = [ [ [ (e >y @)t
0 %=1

is convex in U.

(Fla *FBa)" @) _ (N ()" (@)
{1 " Frar Fz.,)'(z)} - {,Z W e fzk)')(z)} i
(Fx * fa)" (@)
= U @

by hypothesis (fix * f2,)(z) is convex that is

Re I7 (fix * fan)" (2)

G oy @ T 1} it
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Thus,

ref1s GsBr @) o] G fu)'@) | !

) (fir * far)' (2) =] ? (fir * ) (2)
‘ (fie * f21)" (2)
| zRe[z(ﬁ“ka),(z)+1]>0

; Thus the integral operator
|

Fig * Fpq = J ﬂ((flk * fz;:)'(t))adt
0 k=1

is convex in U.

E———

This concludes the proof of Theorem 2,
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