ICASTOR Journal of Mathematical Sciences Vol. 5, No.1 (2011) 79 – 83

ON HADAMARD PRODUCT OF CERTAIN INTEGRAL OPERATOR

D. O. Makinde

Department of Mathematics Obafemi Awolowo University Ile Ife, Nigeria

Correspondence: Department of Mathematics, Obafemi Awolowo University, Ile Ife, 220005, Osun State, Nigeria.

E-mail: domakinde.comp@gmail.com, dmakinde@oauife.edu.ng

ON HADAMARD PRODUCT OF CERTAIN INTEGRAL OPERATOR

D. O. Makinde

Department of Mathematics Obafemi Awolowo University Ile Ife, Nigeria

ABSTRACT

In this paper, we investigated the Hadamard product of the integral operator of the form

$$F_{\alpha}(z) = \int_0^z \prod_{k=1}^n (f'_k(t))^{\alpha}$$

KEYWORDS: Univalent, Starlike, Convex.

2000 Mathematics Subject Classification: 30C45

INTRODUCTION

Let H(u) denote the class of all analytic functions in the unit disk $U = \{z \in C : |z| < 1\}$. A is the set of analytic functions $f \in H(u)$ such that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $z \in U$ and S is the set of functions $f \in A$ such that f is univalent in U. S^* is the class of functions in the unit disk defined by $S^* = \left\{ f \in H(u) : f(0) = f'(0) - 1 = 0, R_e \left\{ 1 + \frac{zf'(z)}{f(z)} \right\} > 0, z \in U \right\}$. S^c is the class of functions in U denoted by

$$S^{c} = \left\{ f \in H(u): f(0) = f'(0) - 1 = 0, R_{e} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, z \in U \right\}$$

 S^* and S^c are the class of starlike and convex functions with respect to the origin respectively. For the complex valued functions, let

Correspondence: Department of Mathematics, Obafemi Awolowo University, Ile Ife, 220005, Osun State, Nigeria. E-mail: domakinde.comp@gmail.com, dmakinde@oauife.edu.ng

$$f_1(z) = z + \sum_{n=2}^{\infty} a_{1n} z^n$$
, $f_2(z) = z + \sum_{n=2}^{\infty} a_{2n} z^n$

The Hadamard product is given by

$$f_1 * f_2 = f(z) = z + \sum_{n=2}^{\infty} a_{1n} a_{2n} z^n$$
.

In 1973, Kudryashov investigated the maximum value of M such that the inequality

$$\frac{zf''(z)}{f'(z)} \le M \tag{1}$$

implies that f is univalent in U. He showed that if M = 3:05 ... where M is the solution of the equations $8[M(M-2)^3]^{1/2} - 3(3-M)^2 = 12$ then f is univalent in U. Also, D. Breaz, S. Owa and N. Breaz considered the integral operator

$$F_{\alpha_1,\alpha_2,\dots,\alpha_n}(z) = \int_0^z (f_1'(t))^{\alpha_1} \dots (f_n'(t))^{\alpha_n} dt$$

showed that

$$\left| \frac{zf_i''(z)}{f_i'(z)} \right| \le M \tag{2}$$

is starlike where $M_1 = 2$: 8329 ... is the smallest root of equation $x \sin x + \cos x = 1/e$. Furthermore, D. O. Makinde investigated the univalence, starlikeness and convexity of the integral operator

$$F_{x_1+iy_1,x_2+iy_2,\dots,x_n+iy_n} = \int_0^z \prod_{k=1} (f'_k(t))^{x_k+iy_k}$$

We now present our main results.

1. MAIN RESULTS

Theorem 1: Let $0 < \alpha < 1$ and let

$$\left|\frac{z(f_{1k}*f_{2k})''(z)}{(f_{1k}*f_{2k})'(z)}\right| \leq M_1,$$

then the integral operator

$$F_{1\alpha} * F_{2\alpha} = \int_0^z \prod_{k=1} ((f_{1k} * f_{2k})'(t))^{\alpha} dt$$

is univalent, $0 < n\alpha \le 1, k \in \overline{1, n}, n \in \mathbb{N}$.

Proof:

Let

$$H(z) = \frac{(F_{1\alpha} * F_{2\alpha})''(z)}{(F_{1\alpha} * F_{2\alpha})'(z)}$$

But

$$(F_{1\alpha} * F_{2\alpha})'(z) = \prod_{k=1}^{n} ((f_{1k} * f_{2k})'(z))^{\alpha}$$

= $((f_{11} * f_{21})'(z))^{\alpha} ((f_{12} * f_{22})'(z))^{\alpha} ... ((f_{1n} * f_{2n})'(z))^{\alpha}$

Thus, for k = 2 we obtain

$$(F_{1\alpha} * F_{2\alpha})''(z) = \alpha \left((f_{11} * f_{21})'(z) \right)^{\alpha - 1} \left((f_{11} * f_{21})''(z) \left((f_{11} * f_{21})'(z) \right)^{\alpha} \right) + \left((f_{11} * f_{21})'(z) \right)^{\alpha} \alpha \left((f_{12} * f_{22})'(z) \right)^{\alpha - 1} \left((f_{12} * f_{22})'(z) \right)''$$

Simplify we obtain

$$z\frac{(F_{1\alpha} * F_{2\alpha})''(z)}{(F_{1\alpha} * F_{2\alpha})'(z)} = \alpha \sum_{k=1}^{2} z\frac{(f_{1k} * f_{2k}'')(z)}{(f_{1k} * f_{2k}')(z)}$$

Thus, inductively we obtain

$$z \frac{(F_{1\alpha} * F_{2\alpha})''(z)}{(F_{1\alpha} * F_{2\alpha})''(z)} = \alpha \sum_{k=1}^{n} z \frac{(f_{1k} * f_{2k}'')(z)}{(f_{1k} * f_{2k}')(z)}$$
$$\left| z \frac{(F_{1\alpha} * F_{2\alpha})''(z)}{(F_{1\alpha} * F_{2\alpha})'(z)} \right| \le \alpha \sum_{k=1}^{n} \left| z \frac{(f_{1k} * f_{2k}'')(z)}{(f_{1k} * f_{2k}')(z)} \right|$$

 $\leq n\alpha M$

 $\leq M$

by the hypothesis that $0 < n\alpha \le 1$

Thus, by (2) the integral operator

$$F_{1\alpha} * F_{2\alpha}(z) = \int_0^z \prod_{k=1}^n ((f_{1k} * f_{2k})'(t))^{\alpha} dt$$

is univalent U.

This concludes the proof of Theorem 1.

Corollary: Let $\alpha \in C$, $|\alpha| < 1$ and let

$$\left| \frac{z(f_{1k} * f_{2k})''(z)}{(f_{1k} * f_{2k})'(z)} \right| \le M$$

then the integral operator

$$F_{1\alpha} * F_{2\alpha} = \int_0^z \prod_{k=1}^n ((f_{1k} * f_{2k})'(t))^{\alpha} dt$$

is univalent.

Theorem 2. Let $\alpha \in R$, $\alpha > 0$. Suppose $(f_{1k} * f_{2k})(z)$ is convex for all $k \in \{1, 2, ..., n\}$. Then the integral operator

$$F_{1\alpha} * F_{2\alpha}(z) = \int_0^z \prod_{k=1}^n ((f_{1k} * f_{2k})'(t))^{\alpha} dt$$

is convex in U.

Proof:

$$\left\{1 + \frac{(F_{1\alpha} * F_{2\alpha})''(z)}{(F_{1\alpha} * F_{2\alpha})'(z)}\right\} = \left\{\sum_{k=1}^{n} \alpha z \frac{(f_{1k} * f_{2k})''(z)}{((f_{1k} * f_{2k})')(z)}\right\} + 1$$

$$\geq z \frac{(f_{1k} * f_{2k})''(z)}{((f_{1k} * f_{2k})')(z)} + 1$$

by hypothesis $(f_{1k} * f_{2k})(z)$ is convex that is

$$Re^{\left\{\frac{1}{2}\frac{(f_{1k}*f_{2k})''(z)}{(f_{1k}*f_{2k})'(z)}+1\right\}} > 0$$

Thus,

$$Re\left\{1 + \frac{(f_{1k} * f_{2k})''(z)}{(f_{1k} * f_{2k})'(z)}\right\} = Re\left\{\sum_{k=1}^{n} \alpha z \frac{(f_{1k} * f_{2k})''(z)}{(f_{1k} * f_{2k})'(z)} + 1\right\}$$
$$\geq Re\left\{z \frac{(f_{1k} * f_{2k})''(z)}{(f_{1k} * f_{2k})'(z)} + 1\right\} > 0$$

Thus the integral operator

$$F_{1\alpha} * F_{2\alpha} = \int_0^z \prod_{k=1}^n ((f_{1k} * f_{2k})'(t))^{\alpha} dt$$

is convex in U.

This concludes the proof of Theorem 2.

REFERENCES

- 1. D. Breaz, S. Owa, N. Brea. A new integral univalent operator; Acta Universitatis Apulensis; No 16, 2008, pp. 11-15.
- 2. D. O. Makinde, T. O. Opoola. On sufficient condition for starlikeness; General Mathematics; Vol. 18, No. 3, 2010, pp. 35-39.

