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Abstract

Thermal instabilities such as thermal explosion and thermal ignition are examined in
a two-step reactions mechanism, comprising of a chain-branching and a chain-breaking
step. The aim of this study is to examine the influence of the chain-breaking step on these
instabilities and then compare our findings with the existing results for the one step model,
which is mainly a branching step. The resulting mathematical equations were subjected
to a variational method executed on the Mathematica package for the analysis of thermal
explosion, while the thermal ignition is amenable to simple integration. These results
show that the chain branching step leads to a complete departure from existing results
for the one step model. It is established that the Frank-Kamenetskii parameter (4.) and
the ignition time (7;) are monotonically decreasing functions of the hieat parameters.

1. Introduction

[nstabilities are frequently occurring phenomena in reaction kinetics. In reactive fluid
dynamics, these instabilities include thermal explosion. thermal ignition, flame propaga-
tion, isothermal oscillations etc. These phenomena are known to have different nature
and the way they occur are not the same. For example, thermal explosion oczurs at

the steady state (time-independent), while thermal ignition is a time dependent process.




In addition, thermal iguition requires an external influence such as spark, compression
wave, ete., for its propagation, while therimal explosion is brought about Ly the thermal
properties of the mixture and geometries of the reacting vessel.

The classical theory of thermal explosion and thermal ignition was originally developed
to deal with a single irreversible exotherimnic reaction [Stolin et al.[L9], Okoya and Ajadi
(2], Boddington et al. {4, 5]}. Subsequently, this study has been extended to a system of
two or more reactions [Boddington et al.[G, 7], Nunziato {13], Grahiamn-Eagle 8], Okoya
{14, 15, 16], Ajadi and Okoya {2] and Makino {12]]. Mathematically, thermal explosion
is mncasured by a parameter 4, a dimensionless measure of heat release, while the critical
Frank-Kamenetskii (d), marks the onset of thermal explosion. Thus, for § > §5 and a
corresponding temperature, 8., explosion occurs and for § < d., a stable behaviour is
obtained. Similarly, thermal ignition may be described as a sharp or unexpected increase
in temperature, while the ignition time (r;) is the time for which thermal runaway is
reached.

Our purpose here is to study the thermal explosion and thermal ignition theory in a

model two-step reactions mechanism of the form,
F+ X — 2X E) = 00, (1)

2X +M — 2P +M E,=0 (1)

where Ey and F, are the activation energies of steps (I} and (I7) respectively, F is the
reactant{Fuel), X is the radical, P is a product, while M is a third or inert body. The
clemnentary step (I) is the branching step, which is a reaction capable of producing a
uct increase in the number of chain carrier (X), while (I1) is the chain-lreaking step
(termnination) leading to the termination of the chain.

In their studies, Boddington et al. [5] considered a system of exotherinic sinuitaneous
reactions. Analytical solution was obtained for the special case of two parallel reactions
for the slab geometry.

Grahani-Eagle and Wake (8] extended this investigation to cther geometries such as
cvlinder and the sphere. As the analytical metliod considered by Boddington [6] does not
always generalize to (l.ese geometries, @ variational methor! i used. The resulis obtained
have been observed to be 98% accw ate when compared to the exact solution.

In the ignition theory, a variation of (I} and (II} has been investigated by Ayeni [3).
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Of particular interest, he provided an upper bound for the iguition time as function of
the activation encrgy.

Ajadi 1], examined the effect of the activation encrgy parameter as well as the pa-
rawncter which ineasures the ratio of the oxygen consumption to that of the fucl, using a
one-step porous medium comb:ustion model. The fact that oxygen supports combustion
is well established.

Nunziato et al. [13] derived an expression for the thermal ignition tie of a honoge-
neous explosive which is exothermically decomnposing by two parallel Arrhenius reactions.
The result involves the thermal ignition time of each reaction alone and is expressed in
terms of the hypergeometric function. An application of their analysis to the case ol
uitromethane ignition is illustrated.

Okoya [14] obtained an analytic expression for the thermal ignition time of a two-
step reactive system. He employed the effective activation energy approach which allows
the elimination of previous difficulties arising in the estimation of ignition time. The
result of this novel technique is compared with numerical result as well as those obtained
previously, and there is good agreement in all cases.

Varatharajan and Williams [20] obtained an integral expression for the ignition times
in terms of the branching reaction, branching and initiation rate parameters, energetic
parameters, the activation temperature of the branching in the limit in which the ratio of
the initiation rate to the branching rate is small.

More recently, Ajadi and Okoya [2] investigated the influence of variable pre-exponential
factor on the ignition time of a system of homogeneous three-step reaction mechnaism.
Based on a simple munerical analysis, it is shown that for the ignitiou time over a Lroad
range of realistic constant, the variation of pre-exponential factor leads to a significant
departure from the Arrhenius case.

While the above model mechanisin has heen well studicd for lame propagation [Joulin
{11], Niioka [19], etc. }. uot much has been done on the thermal explosion and thermal
ignition theorv. Hence the motivation for this work. In addition, the thermal runaway
of chemnical reactions occur frequently and disastrously in the cliemical industries, sonme-
times with the tragic loss of huan lives and cousiderable damage to property and oilier
cconouiic lesses. There would be need to know the safe period (ignition time) prior to the

accurrence of this phenomenon. The occurrence of thermal explosion (e.g spontancous
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combustion), resulting in wood forest disaster has given more iimpetus to this work

2. Mathematical Formulation

The mathemnatical description of the reaction mechanisin is governed essentially by

the species and energy equations. Thus, in the absence of convection, we have,

9F 190 (,, OF ‘
— = |D)— ]| - B FX -E\/(RT)), 2.1)
9t T 0r (I lar) 1 exp (—£1/(RT)) (
0X %) X >
OX _ 19 (1ip, 2%\ 4 BiFX exp (~Ei/(RT)) — BoX?, (2.2)
ot 36 f oz
and
oT I‘ S 2 \
% = —11—‘88_1: (f[{%) + Biqu F X exp (—E; /(RT)) 4+ BagX?, (2.3)

where D), Dy and K are the diffusion coefficients of the fuel, radical and the thermal
conductivity respectively, B, and B, are the pre-exponential factors for (I) and (II) re-
spectively, = and ¢ are the space and time variables respectively, while 7 is the geometry
factor[i=0(Slab), i=1{Cylinder) and i=2(Sphere)]. Equations (2.1) and (2.2) are the
species equations for the fuel and radical, while (2.3) is the energy equation.

The assumption that the reactant consumption is not negligible is known [ Bodding-
tion et al.[7}]]. However, we shall assume in this study that the reactant consumption
is negligible, thus (2.1) - (2.3) reduce to the energy equation(see Okoya and Ajadi [2],
Boddington et al. [4, 5] etc. |,

or K 0

in 9T . .
Bn = ;% <:(.' Dl—a_f> + B](]]F.)\ exp(—El/(RT)) -+ B-g(]g)\'!, (2.4)

with the boundary conditions,
T(=1,t) = To, T(1,t) = T} (2.5)

and the initial condition

Tz, 0) = T (2.6)
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2.1  Thermal Explosion Theory

The steady state form ol equation (2.4) results in the ordinary differential equation

ot d

K d T . 2 e
L (:r‘(-) + By F X exp (= E/(RT)) + Bap X =0, (2.7)

dx
with the boundary condition

dT

E=0=T(1)=0. (2.8)

We non-dimensionalize (2.7) and {2.8) using the following variables

T-T RTy T :
- =2 d p== 2.9
g o T F W= (2.9)

where Ty is the surrounding temperature, a is the radius of the cylinder or sphere or the

half width of the slab. Hence, equations (2.7) and (2.8) become

1d [ ,df B1q FX exp(—E\/(RTp)a?) Bygo X exp(E1/(RTo)) -
R Bl I 4 =0, (2.10)
ptdp \" dp KRT} oF
r simply,
1d [ .df
—— (p‘—) + 6 (exp(6/(1 +€6)) + 68) =0 (2.11)
ptdp \" dp
This is subject to the realistic boundary condition (@ = 1)
de
d—(p=0). 0(p=1) =0, (2.12)
P

where & =

Biqn F X exp(—E\/(RTy))d? and f§ = Byga X exp(E\/(RTy))
KRT? oF

are the Frank - Kamemetskii parameter and heat parameter (due to the termination step)
respectively.
We now apply the variational technique previously considered in Grahani-Eagle et al

(8] to calculate é.. and 8, in equations (2.11) and (2.12). Consider the functional,

1 2
10 - 1
F5(0) = /p‘ <L> dp — (5/ P (exp(0) + B0) dp (2.13)
0
0
A:r example of functions satisfying the boundary condition (2.12) is

8(x) = Acos (%) + Bcos (%) (2.14)




For the slab (7 = 0), (2.13) becomes
2 (A 9 e Ik .
Hmmnp:%(§f+ay>foﬁgxmm4ﬁmmk
and the equations to be solved are

OF _, OR

—_— = — 2.15
ga =% 35 =% (2.15)
and , "
62F5 62F5 a Fé
| = ——= 2:1
(6A2 ) <882 6A0B (15
Thus, we solve these systern of equations,
2 1
M—d/ Acos (E) (exp(8{p)} + B)dp =10 (2:17);
8 | 2
972B 1 3nz
- —_— 3 = 2.1
= =6 [ Acos (S5 (exp(6(e)) + B dp = 0 (218)
and
2 1 2, TT 9r? 1, 7T
(g ~5 [ Acos (T)exp(e(p»dp) x (? ~5 [ cos (37)<exp(9<m)dp)
= (5 [ cont2) cos(2) exp(o(e) ) (219)
— | cos(35) cos(=; p(8(p , X

simultaneously for A, B and 6., where 8, = A + B. The definite integrals in equations
(2.17) - (2.19) were discretized using the Simpson numerical method and the equations
are then solved numerically on the Mathematica systern.

. TABLE 1
Variation of Frank-Kamenetskii parameter (6..) and 6. with heat parameter(g3)

8 0.0 0.25 0.5 075 1.0 1.25 1.5

O | 1.1672 | 1.1667 | 1.1662 | 1.1655 | 1.1648 | 1.1640 | 1.1631
0 | 0.8784 | 0.7455 | 0.6476 | 0.5724 | 0.5129 | 0.8065 | 0.6931




22 Thermal Ignition Theory
The thermal ignition theory is usually based on the assumption that the systein is spatially

homogencous or the thernal conductivity is being very poor. Thus equation (2.4) reduces

to
T
T = B FX exp(=E1/(RT)) + Bz X7, (2.20)
ot
with the initial condition
Tl =T (2.21)

We non-dimensionalize (2.20) - (2.21) using the variables
T-Th RT, t
= ——— = — : i = — 2:99)
2] T € E, ind 7 b ( )

When (2.22) is substituted into (2.20) and (2.21), we obtain

B =8 (exp(6/(1 +0)) + 1) 2.23)

with the initial condition,
6(0) =0, (2.24)
where

_ BiqE\FX exp(—E,/(RTq)) _ BagatoX?
= T2 and ' = “RIT

We may integrate (2.23) to give

6[

are constants.

4 du
T= / & (exp(8/(1 + €6)) + B')

(2.25)

As 8 — oo(runaway temperature), 7 — 7;. In particular, for §' = 1, and using the initial

condition (2.24). equation (2.25) becomes

;e /x du (2.26)
0 (exp(8/(1 + )+ 8) '
In the limit of ¢ — 0,
In(1 + 3"
= — 2.27
T, 7 (2.27)
E?2

Variation: of ignition timne (7;) with the heat parameter(J').

05 | Lo | 15 | zﬂ 2.5 | 30 | 35 | 40 | 45 Ts.o 55| 60 | 65

7| 1.00 | 0.81 | 0.69 0.61[0.55\0.50 0.46 | 0.43 | 0.40 n.szo.aﬁ 0.34[0.32%313
S . S — —— il —— - —-— - J

L




3. Conclusion

The solutions of the thermal explosion theory and ignition theory have been preseated
in Table 1. and Table 2. above. In Table 1., d+ and the critical temperature (4,,) is
ionotonically decreasing function of 3. Thus, as more heat is evolved, the tendencey for
the occurrence of therinal explosion incrcases. Similarly, Table 2., 7, is monotonically
decreasing function of 8. This also implies that as more heat is evolved from the systen,
the time to ignition reduces. This is physically reasonable since we have assuined that
the rate at which heat is given out is low compared to the production of heat. From the
tables, it is observed that the results of the one-step reaction (i.e. =0 =0), is in full
agreement with the existing literature [Graham - Eagle and Wake (8], Boddington et al.

{4. 5] and Zeldovich et al.[21] ].
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