

A STUDY OF STABILISATION OF CLAY SUBGRADE SOILS USING PERIWINKLE SHELL ASH

ADEYEMI BABAYEMI FAJOBI

B.Sc., M.Phil. (Civil Engineering), O.A.U., Ife

(TP09/10/R/0027)

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN CIVIL ENGINEERING, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA.

2015

CERTIFICATION

This is to certify that this research thesis titled "A Study of Stabilisation of Clay Subgrade Soil using Periwinkle Shell Ash" was carried out by FAJOBI, Adeyemi Babayemi of the Department of Civil Engineering, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Nigeria.

Prof. O. A. Agbede	Date
(Project Supervisor)	
Dr. K. T. Oladepo	Date
(Project Co-Supervisor)	
Prof. K.A. Taiwo	Date
(Head of Department)	

OBAFEMI AWOLOWO UNIVERSITY

ILE- IFE

HEZEKIAH OLUWASANMI LIBRARY

POSTGRADUATE THESIS

AUTHORISATION TO COPY

AUTHOR: Adeyemi Babayemi FAJOBI

TITLE: A Study of Stabilisation of Clay Subgrade Soils using Periwinkle Shell Ash.

DEGREE: Ph.D. (Civil Engineering)

YEAR: 2015

I, Adeyemi Babayemi FAJOBI hereby authorise the Hezekiah Oluwasanmi Library to copy my thesis in whole or in part in response to request from individual researchers or organisation for the purpose of private study or research.

Date

Signature

DEDICATION

This project is dedicated

То

My Late Mother

Deaconess Dorcas Temilola Fajobi

ACKNOWLEDGEMENTS

All thanks are due to God Almighty forever, for His everlasting love over my life. My sincere appreciation and deepest gratitude goes to my supervisor, Prof. O.A. Agbede and co-supervisor, Dr K.T. Oladepo for their patience, guidance, assistance and constructive criticisms during the course of this research. The favours and blessings of God Almighty will not depart from you sirs.

Furthermore, I wish to appreciate the invaluable contributions of Dr. O.O. Ige Engr. J.O. Jeje, Dr. L.E. Umoru, Dr. O. A. Koya, Dr. K.O. Olusola, Prof. M. O. Olorunfemi, Prof. I. A. Adekalu, Mr T. Y. Olasupo, Mr R.B. Ajala and all members of staff, Civil Engineering Department, OAU, Ile-Ife, toward the successful completion of this work. The favour and glory of God Almighty will not depart from you all. My gratitude goes to the following people: John Nwosu, Samuel Ibitioye, Olukayode Awe, Ajibola Alamutu, Olajide Bello, Rauf Badru and Anthony Ozurumba for their assistance in the collection of the various soil samples and in conducting the various field and laboratory tests.

My special thanks to my family members, most especially my ever loving wife, Mrs A.O. Fajobi, my children; David, Daniel and Deborah for being there for me at all times. I am really grateful to God for having you all in my life. To others not mentioned here, who have contributed in one way or the other, the favour and mercies of God will continue to abide in your lives forever (Amen).

TABLE OF CONTENTS

				PAGE
TITLE P	AGE			i
CERTIF	ICATION		ii	
AUTHC	RISATION TO COPY		iii	
DEDICA	ATION		iv	
ACKNO	WLEDGEMENTS		v	
TABLE	OF CONTENT		vi	
LIST OF	TABLES		xii	
LIST OF	LIST OF FIGURES			ix
LIST OF PLATES			xvi	
LIST OF ACRONYMS			xvii	
ABSTRA	ACT			xviii
СНАРТ	ER ONE: INTRODUCTION	1		
1.1	Background			1
1.2	Statement of Research Problem		5	
1.3	Aim and Objectives			6
1.4	Justification of Study			6
1.5	Scope			7

СНАРТ	CHAPTER TWO: LITERATURE REVIEW 9	
2.1	Nature of Soil	9
2.2	Engineering Soil	10
2.2.1.	Soil colour	10
2.2.2	Soil texture	11
2.3	Clay Soil	11
2.4	Mineral and Crystal Structure of Clay	14
2.5	Clay Groups	14
2.5.1	Kaolinite group	14
2.5.2	Montmorillonite group	17
2.5.3	Illite group	17
2.5.4	Serpentine group	18
2.5.5	Vermiculite group	18
2.6	Expansive Clay	18
2.7	Geology of the Study Area	19
2.8	Periwinkle Shells	20
2.8.1	Physical features	20
2.8.2	Chemical composition	23
2.8.3	Application and uses	23
2.9	Soil Stabilisation	23
2.9.1	Objectives of soil stabilisation	25
2.9.2	Soil stabilisers	25

	2.9.3	Mechanica	l stabilisation	26
		2.9.3.1	Stabilisation by compaction	26
		2.9.3.2	Stabilisation by consolidation	27
	2.9.4	Chemical st	tabilisation	28
		2.9.4.1	Fly ash stabilisation	28
		2.9.4.2	Bituminous stabilisation	28
		2.9.4.3	Cement stabilisation	29
		2.9.4.4	Lime stabilisation	30
2.10	Factor	s Affecting th	e Strength of Stabilised Soil	32
	2.10.1	Organic r	natter	32
	2.10.2	Sulphates		32
	2.10.3	Sulphides		32
	2.10.4	Compacti	on	33
	2.10.5	Moisture	content	34
	2.10.6	Temperat	rure	34
	2.10.7	Dry- wet	effect	34
2.11	Highwa	ay Pavement	S	35
	2.11.1	Rigid paver	nents	35
	2.11.2	Flexible pav	vements	35
2.12	Subgra	ide		37
2.13	Subgra	ide Performa	nce	38

AI AWOLOWO VFRSITY

2.13.1	California bearing ratio of soil	39
2.13.2	Unconfined strength of soil	41
2.14	Previous Work on Periwinkle Shells	41
2.15	Material Characterisation	43
CUADT		
СНАРТ	ER THREE: MATERIALS AND METHODS	45
3.1	Materials	45
3.1.1	Periwinkle shells	45

Soil samples 3.1.2

3.2

- 45 Equipment for laboratory tests 45 3.1.3 3.1.3.1 Geotechnical engineering equipment 49 3.1.3.2 Soil materials characterisation equipment 49 Methods 49 Analysis of the soil samples properties 3.2.1 50 Preparation of periwinkle - shell ash 51 3.2.2
- 3.2.3 Determination of geotechnical properties of soil samples 51 3.2.4 52 Material characterization 3.2.5 Test of significance 54
- **CHAPTER FOUR: RESULTS AND DISCUSSION** 56
- **Results of Geotechnical Engineering Tests** 4.1 56

	4.1.1	Natural moisture content		56
	4.1.2	Specific gravity	56	
	4.1.3	Particle size analysis		58
	4.1.4	Soil classification		58
	4.1.5	Atterberg limit	58	
4.2	Results	of Material Characterisation		60
	4.2.1	Scanning Electron Microscope (SEM) results	60	
	4.2.2	Energy Dispersive X-ray (EDX) results	64	
	4.2.3	Fourier Transform Infrared (FTIR) results		66
4.3	Additio	n of Periwinkle – Shell Ash to Soil Samples		73
	4.3.1	Results of Atterberg limit test for PSA and soil samples		73
	4.3.2	Results of compaction test for PSA and soil samples test	73	
	4.3.3	Results of unconfined compression test for PSA and soil samples	s 79	
4.4	Additio	n of Lime to Periwinkle – Shell Ash and Soil Samples	84	
	4.4.1	Liquid and plastic limits test		84
	4.4.2	Compaction test		90
	4.4.3	California bearing ratio tests		90
4.5	Additio	n of Portland cement to Soil Samples		93
	4.5.1	Atterberg limit	93	
	4.5.2	Compaction		99
	4.5.3	California bearing ratio	99	
	4.5.4	Unconfined compression strength		103

4.6	Additi	on of Cement to Periwinkle – Shell Ash and Soil Samples	103	
	4.6.1	Atterberg limit		103
	4.6.2	Compaction		103
	4.6.3	California bearing ratio	107	
	4.6.4	Unconfined compression		108
4.7	Test o	f Significance T- Test analysis	QC'	109
СНАР	TER FIVE	: CONCLUSION AND RECOMMENDATIONS 114		
5.1	Conclu	ision		114
5.1	Recom	nmendations		115
REFE	RENCES		117	
APPE	NDIX A		134	
APPE	NDIX B		168	
APPE	NDIX C		177	

LIST OF TABLES

Table 2.1:	Properties of soil particle	12
Table 2.2:	Clay minerals	16
Table 2.3:	Various oxide concentration from periwinkle shell	24
Table 2.4:	Typical California Bearing Ratio values	40
Table 2.5:	Relationship of consistency and unconfined compressive streng	th 42
Table 3.1:	Soil samples locations and GPS coordinates	47
Table 4.1:	The geotechnical properties of soil samples	57
Table 4.2:	The chemical composition of periwinkle shell samples obtained	
	from EDX	65
Table 4.3:	The chemical composition of the soil samples as obtained	
from EI	X	67
Table 4.4:	The FTIR bands position for the unfired and fired	
	Periwinkle shell samples	70
Table 4.5:	The FTIR bands position for various clay samples and suggested	
interpro	etation	72
Table 4.6:	Summary of Atterberg limits tests of PSA stabilisation only	74
Table 4.7:	Results of compaction test for the soil samples	78

Table 4.8:	Unconfined compressive strength and undrained shear strength	n of soil samples
		80
Table 4.9:	Stabilisation of soil samples with percent lime only	85
Table 4.10:	Summary of Atterberg limit test on lime and PSA stabilisation	89
Table 4.11:	Summary of compaction test on lime and PSA stabilisation	91
Table 4.12:	Summary of CBR tests values	94
Table 4.13:	Atterberg limits variations of soil samples with cement content	95
Table 4.14:	Summary of compaction data for soil samples with varying pe	rcentage cement
	content 100	
Table 4.15:	Atterberg limits of soil samples with varying percentage	PSA-cement
	content 105	
Table 4.16:	Variation of MDD and OMC with varying cement - PSA content	106
Table 4.17:	Significance test analysis for 6% PSA and 6% lime	110
Table 4.18:	Significance test analysis for 8% PSA and 8% lime	111

LIST OF FIGURES

Figure 1:	Map of Osun State Southwest, Nigeria	8	
Figure 2.1:	Mineral and crystal structures of clay	15	5
Figure 2.2:	Generalised geological map of the study area	21	L
Figure 3.1:	Maps of Osun State showing Ile-Ife and Ede towns	46	5
Figure 4.1:	Particle size distribution curves	59	
Figure 4.2:	The FITR spectra for periwinkle shell	69	
Figure 4.3a:	The FITR spectra for Adesanmi Road soil samples	71	L
Figure 4.3b:	The FITR spectra for Ede Road soil samples	71	L
Figure 4.3c:	The FITR spectra for Adesanmi Rd soil samples	71	
Figure 4.3d:	The FITR spectra for Ipetumodu Road soil samples	71	L
Figure 4.3e:	The FITR spectra for Mokuro Road soil samples	71	
Figure 4.3f:	The FITR spectra for New Market Road soil samples	71	
Figure 4.4:	Liquid limits values of the stabilised soil samples	75	
Figure 4.5:	Plastic limits values of the stabilised soil samples	76	5
Figure 4.6:	Plasticity index values of the stabilised soil samples	77	7
Figure 4.7:	Unconfined Compressive Strength Curves for		
	New Market Samples	81	L
Figure 4.8:	Unconfined Compressive Strength Curve for		

	Adesanmi Sample		82
Figure 4.9:	Unconfined Compressive Strength Curve for		
	Mokuro Samples.	83	
Figure 4.10:	Atterberg limits of lime and PSA stabilization for		
	Sample OS1		86
		20.	
Figure 4.11:	Atterberg limits of lime and PSA stabilization for		
	Sample OS5	87	
Figure 4.12:	Atterberg limits of lime and PSA stabilization for		
	Sample OS6		88 Figure
4.13: Opti	mum moisture content with lime stabilization mix	92	
Figure 4.14:	Atterberg limits of cement content variation for		
	Sample OS5	96	
Figure 4.15:	Atterberg limits of cement content variation for		
	Sample OS4	97	
Figure 4.16:	Atterberg limits of cement content variation for		
	Sample OS3	100	
Figure 4.17:	Maximum Dry Density variation for cement - soil sample	101	
Figure 4.18:	Optimum Moisture Content variation for cement – soil samp	oles 102	

LIST OF PLATES

Plate 2.1:	Shells of common periwinkle	22	
Plate 2.2:	Types of pavements		36
Plate 3.1:	Location of soil samples collection		48
Plate 3.2:	Equipment for material characterisation	53	\mathcal{A}
Plate 3.2a:	The Zeiss EVO MA15 Scanning Electron Microscope	53	
Plate 3.2b:	EMSCOPE TB 500 TEMCARB carbon coater	53	
Plate 3.2c:	Perkin-Elmer 8000 FTIR spectrophotometer		53
Plate 4.1a:	SEM micrographs of unfired periwinkle shell samples	61	
Plate 4.1b:	SEM micrographs of fired periwinkle shell samples		62
Plate 4.2a:	SEM micrographs of Adesanmi clay samples	62	
Plate 4.2b:	SEM micrographs of Ede clay samples	62	
Plate 4.2c:	SEM micrographs of Ipetumodu clay samples	62	
Plate 4.2d:	SEM micrographs of Link Rd clay samples		62
Plate 4.2e:	SEM micrographs of Mokuro clay samples		62
Plate 4.2f:	SEM micrographs of new market clay samples	62	

OBATEMIANOLOWIOLOWINERSIN

LIST OF ACRONYMS

AASHTO	America Association of State Highway and Transportation Officials
ASTM	American Standards for Testing and Materials
BS	British Standard
CaO	Quicklime
CBR	California Bearing Ratio
EDX	Energy Dispersive X-ray
FTIR	Fourier Transform Infrared Spectroscopy
GPS	Global Positioning System
LI	Liquidity Index
LL	Liquid Limit
MDD	Maximum Dry Density
Ν	Number of Blows
омс	Optimum Moisture Content
рН	Measure of Acidity
PI	Plasticity Index
PL	Plastic Limit PSP
Periwin	kle Shell Powder
PSA	Periwinkle Shell Ash

- q_{u:} Unconfined compressive strength
- SEM Scanning Electron Microscope
- UCS Unconfined Compressive Strength
- USCS Unified Soil Classification System
- USDA United State Department of Agriculture
- w Water Content

ABSTRACT

This study determined the geotechnical properties of selected clay subgrade soils, and characterised the soils and periwinkle shell ash. It also determined the stabilising potential of blends of periwinkle shell ash, cement and lime on the geotechnical properties of the soil, as well as, the optimum periwinkle shell ash for stabilisation of clay subgrade soils. This was with a view to establishing the suitability and optimum content of periwinkle shell ash as a stabilizer of clayey subgrade soil for road construction.

Soil samples were collected from six different locations within Osun State, Southwest, Nigeria. Periwinkle shells were collected from a depot site at Ikorodu, Lagos State. The natural moisture contents of the samples as received, were determined using British Standard BS (1377) method, after which the samples were air dried in the laboratory at room temperature. The geotechnical properties [grain size distribution, liquid and plastic limits, specific gravity, compaction, California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS)] of the soil samples were determined, using standard methods. The periwinkle shells were washed in water, sun-dried, fired inside a muffle furnace at 1000°C into ash form, and sieved through 0.425 mm sieve. The Periwinkle Shell Ash (PSA), were subsequently added to the soil samples in incremental values of 2, 4, 6, 8 and 10 percent by weight and the corresponding geotechnical properties were determined. Samples of the formulations were also stabilised using 2, 4, 6 and 8 percent by weight for lime and cement, and their effects on the geotechnical properties evaluated. The characterisations of the soil samples and the PSA were carried out using Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDX) techniques. The optimum formulating mix was determined based on the plasticity and compaction characteristics of the stabilised soils.

The results obtained showed that the selected soils in their natural state belong to A-2-7 and A-7-5 soil classifications, with medium to high plasticity. The FTIR, SEM and EDX results showed that the clay samples are aluminosilicate with different aluminium, silicon and oxygen concentrations. The periwinkle shell ash has calcium and oxygen as its dominant component with traces of sodium and magnesium. The addition of PSA improved the plasticity index of the soil samples with the addition of 6 to 8 % giving the best result for the compaction and CBR. The 6 % PSA addition to the soil gave the optimum value for UCS of the samples. The mixture of lime and PSA in varying proportions also enhanced the plasticity index of the soils at 5 % lime and 4 % PSA mix, while 5 % lime and 8 % PSP improved the compaction characteristic and CBR values of the soils. For cement and PSA mix, 7 % cement and 6% PSA improved the plasticity index of the soils from 14.5 % to 9.2% and CBR value from 10.5 % to 38.44 %. Furthermore, the study showed that the geotechnical values obtained by adding PSA to the soil alone at the 6% to 8% by weight to the soil of soil were not significantly different (p < 0.05) compared with the lime stabilised soils.

The study concluded that periwinkle shell ash in the range 6 % to 8 % by weight of soil can be used as stabil.iser in improving the strength of clay subgrade soil for road construction.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Soil can be defined as any uncemented or weakly cemented mass of minerals and organic materials that cover the solid crust of the earth. It is mainly formed by weathering and other geologic processes that occur on the surface of the solid rock at or near the surface of the earth (Craig, 1987; Punmia *et al.*, 2005). The properties and characteristics of any soil can be observed from different perspectives depending on the observer's area of view, which can be heterogeneous perspective, indicating its variation in engineering behaviour within the soil mass; anisotropic aspect, indicating variation of engineering property with direction. Soil is one of the most abundant and cheapest construction material. Even so, its usage can be greatly extended by enhancing its engineering performance (Bell, 1993).

Soils exist in many varieties and thus have different properties that merit special consideration by the geotechnical engineer. Geotechnical engineers deal with a material that is anisotropic and heterogeneous. Efforts were made to understand these materials using laboratory and in-situ tests. In the work of Adeyemi and Wahab (2008), it was discovered that the geotechnical properties of soil vary from one point to the other.

Subgrade is the soil upon which the pavement structure is placed or constructed at a selected location. It may consist of the undisturbed, local soil or materials excavated elsewhere and placed as fill. The surface above the subgrade is known as the formation level or finishing level (Thagesen, 1996). Although a pavement's wearing course is most prominent, the success or failure of a pavement is more often than not dependent upon the underlying sub-grade and the

material upon which the pavement structure is built. Subgrades are composed of a wide range of materials although some are much better than others.

A subgrade's performance generally depends on two interrelated characteristics namely: *load bearing capacity and change in volumes*. The subgrade must be formed properly to prevent any possible damage to the road pavement. Consideration of factors such as choosing the right or suitable materials affecting the strength, materials specification, materials classification, and method of testing is vital for the road construction especially in earthworks stage (Thagesen, 1996; Pavement Interactive Series, 2011).

The need to carry out geotechnical tests on subgrade soil cannot be overemphasized in highway construction. This is because the strength and bearing capacity of the resulting subgrade should be determined in order to know if it would be able to carry the overlying pavement that would be placed upon it.

Das (1990) stated that soils with low strength are highly deformable and lack of strength leads to soil failure if overloaded. Poor soil conditions usually are attributable to an excess of groundwater or a lack of strength and associated deformability. Treatment methods are therefore aimed at preventing ingress of ground water into the site in question on one hand or removing it from the site, thereby improving soil strength on the other (Bell, 1993).

Soil treatment techniques may be either temporary or permanent. The type of technique chosen depends on the nature of the problem and the type of soil condition. Therefore, any important ground improvement work must be preceded by a site investigation to establish the type of soil that occurs at the site concerned (Bell, 1993). Obviously, an evaluation and selection of the most suitable improvement technique can only be made after a clear picture of ground conditions is established. Full scale testing on site should be carried out and samples are required for conventional laboratory testing to ascertain the properties of the soils concerned. This not only

aids the selection of the treatment process but also is required for the design of the ground improvement programme. Cost is obviously a factor that enters into the equation (Tomlinson, 1995).

Soil stabilization techniques are the various methods used to alter or improve soil properties such as their strength, settlement and bearing capacity with the objectives of improving on the volume stability, strength and stress – strain properties, permeability and durability. The concept of soil improvement or modification through stabilization with the use of additives has been on ground for several thousands of years (Bell, 1993; Das, 2005).

In the past, soils have been stabilized with lime and other relevant available pozzolans. Although this process of improving the engineering properties of soils has been practiced for centuries, soil stabilization did not gain significance until after World War II (Ingles and Metcalf, 1972).

Although several studies (Little, 1969; Ola, 1975, 1977; Lyon Associates Inc., 1971; Gidigasu, 1976; Mesida, 1985; Gidigasu, 1991; Agbede, 1992; Ouf, 2001; Adeyemi *et al.*, 2003; Ayininuola and Agbede, 2009; Kalantari, 2010) have been carried out on tropical soils using various stabilizing agents, it was established that Portland cement, lime and bitumen are the most used stabilizing agents for a wide range of soils, such as granular materials, silts, clays and lateritic soils. As these conventional road