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Abstract 

In this paper, we give criteria for the existence of a unique solution to a 

certain fourth order nonlinear differential equations which is bounded 

together with its derivatives on the real line, globally stable and periodic 

by the use of a complete Lyapunov function. 

1. Introduction 

In this paper, we study the fourth order nonlinear differential equation 

where a is a positive constant, the functions f; g, h and p are continuous in the 

respective argument displayed explicitly. The studies of the qualitative properties 
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(boundedness, stability and periodicity) of solutions for higher order nonlinear 

differential equations have been a subject of interest that have received considerable 

attention from sevcral scholars who have obtained interesting results. Some of these 

results have been summarized in [14]. 

In [l], the authors employed the frequency domain method to investigate the 

boundedness of this class of equation. 

In [ I  I], the Cauchy formula for the particular solution of non-homogeneous 

linear differential equation was employed to achieve the results on boundedness of 

solution. 

Other articles in this connection include Tiryaki and Tunc [18], Tunc [19-221, 

and Tunc and Tiryaki [23] where the second method of Lyapunov was used. All 

these results in one way or the other generalize some results on third order nonlinear 

equations (see [2, 5, 12 and 161). 

In [22], the author gave criteria for the asymptotic stability and boundedness 

of solutions of certain class of the equation above by the use of an incomplete 

Lyapunov (Yoshizawa [24]) function and a stringent condition was placed on the 

nonlinear terms g and h which is the necessity for these functions not only to be 

continuous but also be differentiable. 

In [3], the authors developed a theory to discuss these qualitative properties 

(boundedness, stability and periodicity) in unified way using the Lyapunov second 

method. This theory was then adapted for certain equations of third order in [12, 131. 

As in [ I  I], we will consider the equation (I .  1) with an equivalent system 

this time with the focus on the boundedness, stability and periodicity properties of 

solution in a unified way. 

Since the second (direct) method of Lyapunov still remains one of the most 

effective methods to study these concepts, the purpose of this paper is to extend the 

study in [12, 131 to certain equations of fourth order and give sufficient criteria on 

the nonlinear termsf; g and h that will guarantee the existence of a unique solution to 
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the equation (1.1) which is bounded together with its derivatives on a real line, 

globally stable and periodic. This we shall achieve by the use of a single complete 

Lyapunov function without the use of any signum function and less restriction on the 

nonlinear terms g and h other than been continuous. 

Even though there is no unique way of constructing a Lyapunov function, we 

adapted Cartwright [4] for the construction of the Lyapunov function used in this 

work. 

We wish to refer the reader to [4], [lo], [15], [16], [17], [19], [20] and [24] for 

terminologies, standard results and techniques. 

The paper is organized in the following order: Section 2 gives definitions and 

theories behind our result. Our main result features in Section 3, preliminary results 

in proving the main result are given in Section 4. Section 5 features the proof of the 

main result of this paper. 

Notation. Throughout this paper K, K O ,  K , ,  ..., K12 will denote finite positive 

constants. Kls are not necessarily the same for each time they occur, but each Ki ,  

i = 1, 2, ... retains its identity throughout. 

By VJ1 ,2  we mean the hnction V constructed along the solution part of the 

system (1.2). 

2. Generalized Theorems 

In order to reach our main results, we will first give some important basic 

definitions for the general non-autonomous differential system. 

We consider the system 

X = F(t ,  X ) ,  

where F E CII x Sp], I = [0, CO), t  > 0 and Sp = {X E 9In : I X I < p). Assume 

that F is smooth enough to ensure the existence and uniqueness of solutions of (2.1) 
through every point ( to,  .yo) E J x Sp. Also, let F(t ,  0) = 0 so that (2.1) admits the 

zero solution X = 0. 

Definition 2.1 [24]. The solution X ( t )  = 0 of (2.1) is stable if for any E > 0 

and any to E I there exists a S(to, E) < 0 such that if Xo  E S6(,,, ,I, then 

X( t ;  to, X o )  E SE for all t  2 to .  
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Definition 2.2 [24]. The solution X ( f )  - 0 of (2.1) is asymptotically stable in 

the whole (globally asymptotically stable) if it is stable and every solution of (1.1) 

tends to zero as t -+ oo. 

Definition 2.3 [24]. The solution X ( t )  = 0 of (2.1) is uniformly asymptotically 

stable if it is stable and there exists a &(to)  > 0 such that 11 X ( t ;  to, X o )  (1 + 0 as 

t + oo for all Xo E S6,, . 

Definition 2.4 [24]. A solution X ( t )  of (2.1) is said to be bounded if there exists 

a (3 > 0, such that 

for all t 2 to, where p may depend on each solution. 

Definition 2.5 [24]. A solution X ( I )  of (2.1) is said to be equi-bounded, if for 

any a and to > I, there exists a P(to, a )  > 0, such that if Xo E S,, then 

for all t 2 to, where a is the length of the interval, i.e., cx E [ t l ,  f a ] ,  to 5 t ,  5 12 5 t.  

Definition 2.6 [24]. A solution X ( t )  of (2.1) is said to be uniformly-bounded, if 

for any a and to > I, there exists a P(a) > 0, such that if Xo  E S,, then 

for all t 2 to,  where u is as defined above 

Definition 2.7 [24]. A solution X ( t )  of (2. I) is said to be ultimately-bounded 

for bound M ,  if there exist M > 0 and T > 0, such that for every solution 

X( t ;  to, X o )  of (2.1) 

for all t 2 to + T.  

Definition 2.8 [24]. A solution X ( t )  of (2.1) is said to be uniformly ultimately- 

bounded for bound M ,  if there exists M 2 0 and if corresponding to any a > 0 and 
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to E I there exists T ( a )  > 0, such that X o  E S, implies that 

for all t 2 to + T ( a ) .  

Definition 2.9 [24]. A real value function V  defined as V  : I x 9in + '9, of a 

real variable X  ( X  E 3") and t with the conditions that I 2 T and I xi I < H ( T  and 

H are real constants of which T can be supposed to be as large as we wish and H a s  

small as we wish but not zero) having the properties: 

(i) Continuity: V(t,  X )  is continuous and single valued under the condition 

stated above and V( t ,  0 )  = 0. 

(ii) V(t,  X) is positive definite and 

. av . av . av . 
(iii) V  = - xl I - x2 + ... + - x,, representing the total derivative with ax, ax, ax, 

respect to I is negative definite, is called a Lyapzmov function. 

We shall give the following definitions in our own context: 

Definition 2.10. A Lyapunov function V  defined as V  : I x !Un + 91 is said to 

be complete if for X E TIn ,  

(i) V ( I ,  X) 2 0 

(ii) V ( t ,  X) = 0, if and only if X = 0 and 

(iii) v 12,,(t, X )  I -cl X  1, where c is any positive constant and 1 X I is given 

Definition 2.1 1 .  A Lyapunov function V  defined as V  : I x 3" -+ !I? is said to be 

incomplete if for X  E 3", conditions (i) and (ii) of Definition 2.10 are satisfied, and 

in addition (iii) V ( I ,  X)12,3 5 -c( X I,, where c is any positive constant and I X  1, is 

given as 1 X 1 ,  = x x  such that 1 X 1 ,  +- co as X + co. [: 2r 
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To make these definitions of complete and incomplete Lyapunov hnctions 

clearer we shall consider a simple case of n = 2. 

Consider the simple 2nd order linear differential equation 

x + a*? + bx = 0. 

(where a and b are all positive) with an equivalent system 

x = y ,  

y = -ay - bx. (2.2) 

The following are some of the possible Lyapunov functions for the system: 

and 

where c and 6 are positive constants. 

Let (x(z), y( t ) )  be any solution of (2.2). Then by a straightforward calculation 

from (2.3)-(2.5) and (2.2), we observe that 

v = -sy2, 

Y = -sx2 

and 

Y = -8(x2 + 2 )  

are the derivatives of Vwith respect to the system (2.2), respectively. 

Lyapunov functions defined as in (2.3) and (2.4) are referred to as incomplete 

while the one defined by (2.5) is complete. 

We give the following standard theorems on Lyapunov functions relevant for 
this work. 
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In an attempt to discuss the unified theory of periodicity of dissipative ordinary 

differential equations, Burton and Shunian [3] considered the general differential 

equation 

x = F(r, X ) .  (2.6) 

When the equation (2.6) is linear, it is written as 

X = A ( I )  X + P(t)  , (2.7) 

with the homogeneous system 

X = A(r )X ,  (2.8) 

where A(t)  is an n x n matrix. 

The use of Lyapunov functions which led to the formulation of the following 

scheme was employed: 

(i) If F ( f ,  0 )  = 0,  and if there is a hnction V : [0, a )  x !R3 4 93 such that 

W , ( l X l )  5 V( t>  X )  W,(I X I )  

and 

V ( f ,  X)I(2, , )  -W3( IX l ) ,  

where W; (i = 1 ,  2, 3) are strictly increasing continuous function defined as 

Wi : [0, a) -+ [0, a )  with W ( s )  > 0  and W ( 0 )  = 0  as wedges. Then the solutions 

of the equation (2.6) are uniformly asymptotically stable (UAS). 

(ii) If there is a function V : [0, co) x 913 -+ CR such that 

W l ( l X I ) ~  V( t ,  X )  5 W 2 ( 1 X I )  

and 

V(t ,  X)1(2.1) 5 -W30 X I ) +  M ( M  > 01, 

then the solutions of the equation (2.6) are ultimately bounded (UB) and uniformly 

ultimately bounded (UUB). 

(iii) If the solutions of the equation (2.3) and the equation (2.7) are unique, UB 
and UUB, then the equation (2.6) has a periodic solution. 

(iv) If the zero solutions of the equation (2.5) are uniformly asymptotically 

stable (UAS), then the equation (2.7) has a globally stable periodic solution. 

----------------- 

---------- 
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W e  shall now state without proof, Theorems o f  Burton and Shunian [3]. 

Theorem A [3]. I f F  is Lipschitz in X andperiodic in t with period T and ifthe 

solutions are uni$ormly bounded and unifbrmly ultimately bounded for any given 

bound (say) B, then the equation (2.6) has a T-periodic solzltion. 

Theorem R [3]. Let the following conditions hold: 

( a )  F(t + T ,  X )  = F(t ,  X )  for all t andsome T > 0, 

(b )  all solutions ofthe equation (2.6) are bounded, 

(c) each solution ofthe equation (2.6) is equi-asymptotically stable, 

(d )  the zero solution ofthe homogeneous system corresponding to the equation 

(2.6) is uniformly asymptotically stable (UAS). 

Then the equation (2.6) has a globally stable T-periodic solution 

3. Main Results 

W e  give the main result o f  this work: 

Theorem 3.1. Letf ,  g, h andp be continuous and also in addition letp and h be 

periodic with period o, and the following conditions hold: 

( i )  Ho = h(x)  - h(0) 5 d t lo, x t 0 and Go = AY) - g(O) < c; 
# 0, 

X Y 

(ii) h(0) = g(0)  = 0, 

(iii) 1 Y 11 5 b, 

( iv )  1 p( t )  ( L. M (constant)for all t 2 0. 

Then ( 1 . 1 )  has a globally stable w-periodic solution. 

4. Preliminary Results 

W e  shall use as a tool to prove our main results besides the equation ( 1 . 1 )  a 

function V(x ,  y ,  z, w)  defined by  
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where 

6 
B = - {dL(abd + c )  + a(b2 + d 2  ) [b(d - c )  + cd]  

A 

\ + d[c(a2 + b 2 ) -  ab][d ( l -  a d )  - c ]  + dL(a2c + d ) } ,  

H=- abCd6 {a(b2 + d 2 )  + L) ,  
A 

J = -  jab2 + d - c + L},  
A 

A = abcd[d(l - a d )  - c] ,  

L = b[ad + c[c(b + 1) - c]]  

with a, b, c, d positive and [d(l - a d )  - c]  > 0.  

Lemma 4.1. Subject to the assumptions of Theorem 3.1 there exist positive 

constants Ki = Ki(a,  b, c, d ,  6), i = 1 ,  2 such that 
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Proof. Clearly V(O, 0, 0, 0 )  - 0.  

By rearranging (4. l ) ,  we have 

2V(x, Y ,  z, w) 

3 2  2 = (i) [a[d(l  - ad)]  [ h ( a  + dy + w12 + d 2  ( y  + b d x) 

+ b2d(y  + a2bdx12 + acd ( z + - by3 x]2i 

cd' 
[d(l - a d )  -c](ad(c2  + d 2 ) +  abd2)--(b2 + d 2 )  

a 
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From which we obtain 

2V(x ,  Y ,  z> w) 

-a3b2cd(b2 + d 2 ) -  a b c Z ~  - a2cd[ab2 -t ( d  - c ) ] } z 2  

a 
L -ab[d ( l -ad ) - c ] - - (b2  b c 

2 2 2  2 K , ( x  + y + z + w 2 ) ,  (4.5) 

where 

[d(l -ad)-c](ad(c2  + d 2 ) + a b d 2 )  

- a3b2cd(b2 + d 2 )  - a b c 2 ~  - a2cd[ab2 + ( d  - c ) ]  , 
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Therefore 

2V(x,  y, z ,  w) 2 K1(x2  + y 2  + z2  + w2). (4.6) 

1 2  2 By using the Schwarz inequality I xy I < - 1  x  + y  1, on the equation (4.1), we 
2 

have 

where 

From inequalities (4.6) and (4.7), we have 

2 2 2 2  2 2 Kl (x  + y + z + w ) l V ( X ,  y, z ,  w) I  K2(x  + y + z2  + w2). (4.8) 

This proves Lemma 4.1. 

Lemma 4.2. Subject to the assumptions o f  Theorem 3.1, there e-~ist positive 

constants K j  = K j ( a ,  b, c, d ,  6 )  ( j  = 3, 4 )  such that for any solution ( x ,  y, z ,  w )  

of system (1.2), 

l - K 3 ( x 2  + y 2 + z 2 + w 2 ) + ~ 4 ( 1 x I + I Y I + I ~ I + I w I ) I P ( t ) 1 .  (4.9) 

Proof. From equations (1.1) and (l.2), w e  have 
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After simplification, we have 

v = - { - ~ h ( x ) x  - Ig(y)  y  - [ ~ b  - H ] Z ~  - [DU - J ]  w2 (3 
- Gg( y  ) x  - Ih(x) y  - [Gb - E ]  xz - Jh(x)  z  

- [ G a - F ] x w - D h ( x ) w - [ I b - F - B ] y z - J g ( y ) z  

- [ l a - G - H ] y w - D g ( y ) w - [ D b +  J a - I - C ] z w  

+ E~~ + Axy+p( t )[Gx+ Iy+ J z+Dw]} .  (4.11) 

Using the conditions on h(x)  and g ( y )  the equation (4.1 1) becomes 

v i  - { - ~ d c ~ - [ ~ c - ~ ] ~ ~ - [ ~ b - ~ ] z ~ - [ D a - J ] w  (:I 2 

- [Gc + Id - ~ ] x y  - [Gb + Jd - E]xz  - [Ga + Dd - F ] x w  

- [ I b + J c - F - B ] y z - [ I a + D c - G - H ] y w  

- [Db + Ja - I  - C]zw[h(O) + g(0 )  + p(t)]  [Gx + Iy + Jz + Dw]}.  (4.12) 

Which reduces to 

{ - ~ ~ ( x ~ + ~ ~ + z ~ + ~ ~ ) + [ h ( 0 ) + ~ ( 0 ) + ~ ( t ) ] [ ~ x + I ~ + J z + D w ] } , ( 4 . 1 3 )  

where K3 = max{Gd, [Ic - El, [Jb - HI, [Da - J ] } .  

Inequality (4.1 3) hrther reduces to 

2 2 
{-K3(x + y  + z 2  + w 2 ) + K 4 ( 1 x ~ + ~ y ~ + ~ z ~ + ~  w I ) p ( t ) }  (4.14) 

with K4 = max{D, G ,  I ,  J } .  

Therefore 

2 2 2  V S - K ~ ( X  + Y  +Z + W 2 ) + ~ 6 ( 1 X ~ + ( Y ( + ~ Z ( + l W ~ ) P ( t ) ,  (4.15) 
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( ~ x ~ + ~ y ~ + ~ z ~ + ~ w ~ ) 6 2 ( x 2 + y 2 + z 2  +w2)1/2 ,  

inequality (4.15) becomes 

where K7 = 2K6. 

This completes the proof of Lemma 4.2. 

5. Proof of the Main Results 

We shall now give the proof of the main result. 

Proof of Theorem 3.1. From Lemma 4.1 and Lemma 4.2, we established 

condition (d) of Theorem B. By the hypothesis of Theorem 3.1, condition (a) of 

Theorem B is also satisfied. 

We need now to show that under the same conditions of Theorem 3.1, condition 

(b) of Theorem B is also satisfied. 

Indeed from the inequality (4.16), 

and also from the inequality (4.6), we have 

Thus, the inequality (4.1 6) becomes 

We note that 
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and 

dV - 5 -K8V + p( t )  1, dt 

K6 K7 where K g  = - and Kg = - 
K2 ~y~ 

These imply that 

V I -K8V + K ~ v ' / ~ (  ~ ( t )  ( 

and this can be written as 

v I -2KloV + K ~ V ' / ~ )  p( t )  1, 

I 
where Klo  = - K g  

2 

Therefore 

v + KloV I -KloV + K ~ V ' ~ ~ J  p( l )  ( 

I K ~ V ' / ~ ( (  p( t )  I - KI 1 ~ ~ / ~ } ,  

Kl0 where K I 1  = - 
K9 

Thus, the inequality (5.5)  becomes 

v + KloV I K ~ v ' / ~ v * ,  

where 

V *  = 1 p( t )  1 - K , ~ V ' / ~  

< v ' / ~ (  ~ ( t )  ( 

5 l ~ ( t )  I .  

When I p(t)  I 2 K I  1v1I2, 
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and when ( p(t)  1 2 KI v1l2, 

1 v* l l p ( t ) l . - .  
Kll 

On substituting the inequality (5.9) into the inequality (5.5), we have 

v + KloV l K ~ ~ v ~ / ~ ~  p( t )  1 ,  

where 

This implies that 

v - ' / ~ v  + K , ~ V ' / ~  5 K121 p(t)  1. 

Multiplying both sides of the inequality (4.1 I )  by e1/2K101, we have 

e1 /2K~0 ' {  v - ' / ~ v  + K ~ ~ v ~ / ~ }  5 e 1 / 2 K 1 0 1 ~ 1 2 1  p( t )  1, (5.12) 

l.e., 

2 d { ~ ~ / ~ e l / ~ ~ l o ~  } 5 e V 2 K l ~ 1 ~ 1 2 ~  p(t)  1. 
dt 

(5.13) 

Integrating both sides of (5.13) from to to I ,  gives 

which implies that 
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Using (4.5) and (4.6), we have 

~ ~ ( x ~ ( t )  + i 2 ( ! )  + i 2 ( t )  + ;i'(t)) 

K ~ ( x ~ ( ~ ~ )  + i 2 ( t 0 )  + .Y2(t0) + ~ ( t ~ ) ) e ~ / ~ ~ l ~ ~ ~  

for all I 2 to. 

Thus 

x 2 ( t )  + i 2 ( t )  + i 2 ( t )  + Y ( t )  

where A, and A2 are constants depending on {K , ,  K 2 ,  ..., K I 2  and ( x 2 ( t o )  + 

i 2 ( t 0 )  + i 2 ( t 0 ) )  + Y( tO))  for sufficiently large t, where K  is a constant. 

By the inequality (5.16) and Lemmas 4.1 and 4.2, we have established 

conditions (a), (b) and (d) of Theorem B. Condition (c) follows from (d) and hence, 

the completion of the proof of Theorem 3.1. 
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