

Assessment of the Contribution of Soil Biota and Litter Quality to

Carbon Sequestration of Different Physiognomy in Shasha Forest

Reserve, Nigeria

Samuel Idowu ADEBOLA

SCP12/13/H/1123

B.AGRIC. TECH. (FORESTRY AND WOOD TECH.), FUTA

M.Sc. (ENVIRONMENTAL CONTROL AND MANAGEMENT), IFE

A THESIS SUBMITTED TO THE INSTITUTE OF ECOLOGY AND ENVIRONMENTAL STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN ECOLOGY AND ENVIRONMENTAL SCIENCE FACULTY OF SCIENCE, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA

2016

AUTHORIZATION TO COPY OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE HEZEKIAH OLUWASANMI LIBRARY

POSTGRADUATE THESIS

- AUTHOR: Samuel Idowu ADEBOLA
- TITLE: Assessment of the Contribution of Soil Biota and Litter Quality to Carbon

Sequestration of Different Physiognomy in Shasha Forest Reserve,

Nigeria

DEGREE: Ph.D.in Ecology and Environmental Science

YEAR: 2016

I, Samuel Idowu ADEBOLA, hereby authorize the Hezekiah Oluwasanmi Library to copy my thesis, in whole or in part in response to request from individual researcher or Organization for the purpose of private study or research.

Signature:

Date: -----

CERTIFICATION

This is to certify that this study was carried out by Samuel Idowu ADEBOLA (SCP12/13/H/1123) of the Institute of Ecology and Environmental Studies in partial fulfilment of the requirements for the award of Doctor of philosophy (Ph.D.) in Ecology and Environmental Scienceof the Obafemi Awolowo University, Ile-Ife.

Prof. O. O Awotoye		
Supervisor	Signature	DateInstitute of
Ecology and Environmental Stud	ies	
Prof. O. OAwotoye		
Director	Signature	Date
Institute of Ecology and Environm	nental Studies	

DEDICATION

This research work is dedicated to my Late Mother, Mrs Oyinlola Adebola and mydarling wife, Mrs Anuoluwapo Deborah Adebola. They have been a great blessing to me.

OBHERMIANO LONNO UNIVERSITY

ACKNOWLEDGEMENTS

I am grateful toGod Almighty who has helped and supported me during my Ph.D programme and for given me the grace to accomplish this research work. May His name awesomely be praised.I would like to express my sincere gratitude to my supervisor, Prof. O.O. Awotoye, for his love and academic richness as a supervisor which can be seen in this work. His correction and positive criticism is unequal. The financial assistance that I received from him helped me with research expenses that otherwise I would not have been able to afford.I am indeed grateful to God for having him as my mentor and role model.

Special thanks also go to the following Lecturers of the Institute of Ecology and Environmental Studies: Dr. M.B. Adewole, Dr. (Mrs) O.O. Okoya, Dr.O. J. Mathew, Dr.K. Adepoju, Dr.(Mrs.) O. T. Aladesanmi, other academic staff and the non-academic staff. Multiple people provided me with technical support and advice. Of those, I haveto mentionProf. S.O. Oke of the Department of Botany, Prof. O. K. Adekunle and Mr Leornard Amulu of Nematology Laboratory, Department of Crop Protection, Dr.A. O. Eludoyin of Geography Departmentand Dr. O. J. Owojori formerly of the Department of Zoology.

My Ph.D. work was a great chance to re-discover the power of collaboration. I was lucky to find other peers with shared interests. Working with them enabled me and challenged me to accomplish more than I would have done on my own.My friend, Olagoke Adewole has for many years being very encouraging and supportive of my efforts in the academics. My special appreciation goes to Mr.Ogunrinola Oluwaseun, Mr. Osewole Afolabi, Mr. Peter Ogar, Mr. Abimbola Bolajiand Mr. Ogunwale Taiwo who assisted me during the data collection on the field and laboratory analysis. Thanks to Mr. Bisi Awosiji and Mr. James Anayo of the Department of Forestry, Ministry of Environment Osun State, Nigeria. I will also like to appreciate Mr. Ogunsanwo Gbenga, who assisted me on the study

area map designing. I also value the information derived from the authors whose publications are listed in the references.

Finally, I want to express my priceless appreciation to my wife, MrsAdebola Deborah Anuoluwapo for her uncommon insights and a good deal of moral and financial assistance during this research. She is always the source of my drive.

OBHERMIANOLOWING

TABLE OF CONTENTS

CONTENTS

PAG	HE		
Tittle	e Page	i	
Auth	Authorization		
Certi	fication	iv	
Dedi	cation	v	
Ackr	nowledgements	vi	
Table	e of Contents	viii	
List o	of Tables	xvi	
List o	of Figures		
	xviii		
List o	of Plates	xxii	
Abstract		xxii	
CHA	APTER ONE: INTRODUCTION		
1.1	Project Background	1	
1.2	Statement of the Problem	5	
1.3	Justification for the Study	7	
1.4	Research Questions	9	
1.5	Objectives of the Study	10	
1.6	Scope of the Study	10	
CHA	APTER TWO: LITERATURE REVIEW		

2.1	State of Nigeria Forest	12
2.2	Implication of Forest Management on Earth Carbon Budget	16

2.3	Why Differences in Carbon Accumulation across Physiognomies 19	
2.4	Effects of Lignin on Litter Decomposition and Humification	22
2.5	Nexus between Soil Biota and Litter Quality in Carbon Sequestration	23
2.6	Forests and Carbon Stock	24
2.7	Litter Transformers	27
2.8	Deforestation and Its Consequences on Climate	28
2.9	Deforestation and It Consequences on Biodiversity	30
2.10	Significance of Soil Biota in Litter Comminution	31
2.11	Effect of Litter Quality on Carbon Sequestration	34
2.12	Litter Decomposition and Soil Organic Matter Formation	35
2.13	Litter Decomposition and Belowground Soil Biodiversity 38	
2.14	Above and Belowground Interactions	38
2.15	The Fate of Biodiversity in a Changing Environment	40
2.16	Change Detection in Changing Environment	41
СНАР	TER THREE: MATERIALS AND METHODS	
3.1	Study Area	43
3.2	Description of the Physiognomies	45
	3.2.1 Secondary Re-growth Natural Forest	45
	3.2.2 Terminalia superba Engl.& Diels LimbaPlantation	45
	3.2.3 <i>Pinus caribaea</i> Morelet Plantation	46
	3.2.4 <i>Gmelina arborea</i> Roxb Plantation	46
	3.2.5 <i>Tectona grandis</i> L Plantation	46
	3.2.6 <i>Theobroma cacao</i> L Plantation	47
3.4	Sampling Procedure for Tree Species Assessment	47
3.5	Plant Species Identification, Classification and Biodiversity Indices	47

Assess	ment of Soil Biodiversity	2	48
3.6.1	Location of the Screenhouse for Soil Seed Bank As	sessment	48
3.6.2	Soil Collection and Seed Bank Assessment	5	50
Soil B	iota Assessment	5	50
3.7.1 S	Sampling Techniques and Sorting Method	5	50
3.7.2	Extraction of Enchytraeids (Wet Extraction Procedu	ure)	51
3.7.3	Millipede Sampling Method		51
3.7.4	Earthworm Sampling Method		51
3.7.5	Micro-Arthropods Extraction		52
3.7.6	Collembola and Beetle Sampling Method	5	52
3.7.7	Termite Sampling Method	5	52
3.7.8	Soil Sampling for Nematode Extraction	5	54
3.7.9	Extraction and Enumeration of Nematodes	5	54
Bacter	ia Isolation, Identification and Enumeration	5	55
3.8.1	Collections of Soil Samples for Microbial Analysis	5	55
3.8.2	Sterilization of Glass Wares	5	55
3.8.3	Preparation of Media	5	55
3.8.4	Estimation of Total Heterotrophic Bacteria (THB)	5	55
3.8.5	Estimation of Total Heterotrophic Fungi (THF) Cou	unt 5	56
3.8.6	Isolation of colonies to Obtain Pure Culture	5	56
3.8.7	Identification of Microbial Isolates	5	56
3.8.8	Gram's Test	57	
3.8.9	Nitrate Reductase Test	5	57
3.8.10	Oxidation- Fermentation Test	5	58
3.8.11	Catalase Test	58	
	3.6.1 3.6.2 Soil B: 3.7.1 S 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.7 3.7.8 3.7.9 Bacter 3.8.1 3.8.2 3.8.1 3.8.2 3.8.3 3.8.4 3.8.5 3.8.6 3.8.7 3.8.8 3.8.7 3.8.8 3.8.9 3.8.10	 3.6.2 Soil Collection and Seed Bank Assessment Soil Biota Assessment 3.7.1 Sampling Techniques and Sorting Method 3.7.2 Extraction of Enchytraeids (Wet Extraction Proceed) 3.7.3 Millipede Sampling Method 3.7.4 Earthworm Sampling Method 3.7.5 Micro-Arthropods Extraction 3.7.6 Collembola and Beetle Sampling Method 3.7.7 Termite Sampling Method 3.7.8 Soil Sampling for Nematode Extraction 3.7.9 Extraction and Enumeration of Nematodes Bacteria Isolation, Identification and Enumeration 3.8.1 Collections of Soil Samples for Microbial Analysis 3.8.2 Sterilization of Glass Wares 3.8.3 Preparation of Media 3.8.4 Estimation of Total Heterotrophic Bacteria (THB) 3.8.5 Estimation of Colonies to Obtain Pure Culture 3.8.7 Identification of Microbial Isolates 3.8.8 Gram's Test 	3.6.1 Location of the Screenhouse for Soil Seed Bank Assessment 3.6.2 Soil Collection and Seed Bank Assessment Soil Biota Assessment Sili Sampling Techniques and Sorting Method 3.7.2 Extraction of Enchytraeids (Wet Extraction Procedure) 3.7.3 Millipede Sampling Method 3.7.4 Earthworm Sampling Method 3.7.5 Micro-Arthropods Extraction 3.7.6 Collembola and Beetle Sampling Method 3.7.7 Termite Sampling Method 3.7.8 Soil Sampling for Nematode Extraction 3.7.9 Extraction and Enumeration 3.8.1 Collections of Soil Samples for Microbial Analysis 3.8.2 Sterilization of Glass Wares 3.8.3 Preparation of Total Heterotrophic Bacteria (THB) 3.8.4 Estimation of Total Heterotrophic Fungi (THF) Count 3.8.5 Isolation of colonies to Obtain Pure Culture 3.8.8 Gram's Test 57 3.8.9 Nitrate Reductase Test 53 3.8.10 Oxidation- Fermentation Test 57

	3.8.12	Sugar Fermentation Test	58	
	3.8.13	Sulphide – Indole – Motility (SIM) Test		59
	3.8.14	Citrate Utilization Test 59		
	3.8.15	Triple Sugar Iron (TSI) Assay		59
	3.8.16	Methyl Red and Pogues – Mroskaur (MRVP) Test		60
	3.8.17	Gelatin Liquefaction Test	60	
	3.8.18	Analytical Profile Index 20E (API 20E) for Enterobacteriaceae	\mathbb{N}	60
	3.8.19	Analytical Profile Index for 20 Streptococcaceae/Streptococcus S	pecies	61
3.9	Examir	nations of Fungi Cultures		62
	3.9.1	Cultural Morphology		62
	3.9.2	Microscopic Morphology (Needle – mount preparation)	63	
3.10	Soil St	udies		63
	3.10.1	Soil Sampling 63		
	3.10.2	Soil Laboratory Analysis		63
		3.10.2.1 Soil pH Determination		63
		3.10.2.2 Determination of soil Bulk Density		64
		3.10.2.3 Soil Organic Carbon Determination		64
		3.10.2.4 Estimation of Soil Organic Carbon Pool		65
	~	3.10.2.5 Soil Total Nitrogen Determination		65
		3.10.2.6 Determination of Humic Matter of the Soil		66
3.11	Litter F	Biochemical Composition Analysis		68
	3.11.1	Litter Fall Collection		68
	3.11.2	Determination of Carbon Content in the Litter		68
	3.11.3	Determination of Total Nitrogen in the Litter		69
	3.11.4	Determination of Total Phenol using Garlic Acid Standard		70

	3.11.5	Determination of Lignin Content		7
3.12	Land U	Jse/Cover Analysis	71	
	3.12.1	Accuracy Assessment/Error Matrix		72
3.13	Data A	nalyses		72
CHAP	PTER F	OUR: RESULTS		
4.1	Tree S	pecies Richness and Diversity in Each Physiognomies	2	74
	4.1.1	Overstory Tree Species Richness and Diversity in Secondary	\sum	
		Re-growth Natural Forest		74
	4.1.2	Overstory Tree Species Richness and Diversity in Terminalia super	rba	
		Plantation		75
	4.1.3	Overstory Tree Species Richness and Diversity in Pinus caribaea		
		Plantation		75
	4.1.4	Overstory Tree Species Richness and Diversity in Gmelina arbored	r	
		Planatation		84
	4.1.5	Overstory Tree Species Richness and Diversity in Theobroma caca	0	
		Plantation		84
	4.1.6	Overstory Tree Species Richness and Diversity in Tectona grandis		
		Plantation		84
	4.1.7	Tree Family and Species Distribution at the Overstory in the Study	Area	89
	4.1.8	Overstory Tree Species Diversity for each Physiognomies		89
	4.1.9	Tree Saplings Diversity at Understory in Secondary Re-growth For	est	97
	4.1.10	Tree Sapling Diversity at the Understory in Terminalia superba Pla	intation	97
	4.1.11	Tree Sapling Diversity at the Understory in Pinus caribaea Plantat	ion	101
	4.1.12	Tree Sapling Diversity at the Understory in Gmelina arborea Plant	ation	101
		4.1.13 Tree Sapling Species Diversity at the Understory in <i>Theobry</i>	oma cae	cao

		Plantation	101
	4.1.14	Diversity Tree Sapling Species Diversity at the Understory in Tectona	
		grandis Plantation	106
	4.1.15	Comparison of the Tree Species Abundance across the Strata	
		(Overstory, Understory and Seed Bank) inDifferent Physiognomies106	
4.2	Soil F	auna Abundance across the Different Physiognomies	110
	4.2.1	Abundance of Enchytraeid in the Different Physiognomies	112
	4.2.2	Abundance of Millipede in the Different Physiognomy	112
	4.2.3	Abundance of Earthwormin the Different Physiognomies	119
		4.2.4 Beetle Abundance across the Different Physiognomies	
11	9		
	4.2.5	Abundance of Collembola in all Physiognomies	125
		4.2.6 Termite Abundance across the Different Physiognomies	
13	0		
	4.2.7	Mite Abundance across the Different Physiognomies	130
	4.2.8	Nematode Abundance and Diversity across Different Physiognomies	134
	4.2.9	Microbial Abundance and Diversity in the Different Physiognomies	140
4.3	Litter	Carbon Content of the Different Physiognomies	149
4.4	Litter	Quality across the Different Physiognomies	149
4.5	Effect	of Physiognomies on the Soil Physico-Chemical Properties	152
4.6	Soil O	Organic Carbon Storage (SOC) in Different Physiognomies	154
4.7	Humi	c Substances Composition in Different Physiognomies	157
4.8	Relati	onship between SOC Storage and Soil Fauna and Litter Qualityin	
	Secon	dary Regrowth Natural Forest, Terminalia superba and	
	Gmeli	ina arborea Plantations	159

4.9	Relationship between SOC Storage and Soil Fauna and Litter Quality in Tectona	
	grandis, Theobroma cacao and Pinus caribaea Plantations	163
4.10	Relationship among the Variables within the Different Physiognomies	164
4.11	Land Use/Land-Cover Trend Analysis	168
CHAP	TER FIVE: DISCUSSIONS	175
CHAP	TER SIX: SUMMARY, CONCLUSION AND RECOMMENDATION	198
6.1	Summary	198
6.2	Conclusion	200
6.3	Recommendations	201
REFE	RENCES 203	
APPEI	NDICES	241

LIST TABLES

Table	TitlePages	
2.1	Trends in Extent of Forests in Nigeria between 1990 and 2010 14	
2.2	A Comparison of Recent Forest Inventory in the Tropical Rainforest Ecosystem	15
3.1	The Detail of Satellite Data Used in the Present Study	73
4.1	Species, Family, Abundance and Species Diversity of Adult Tree in Secondary	
	Re-growth Natural Forest	76
4.2	Species, Family, Abundance and Species Diversity of Adult Tree in Terminalia	
	superba Plantation	79
4.3	Species, Family, Abundance and Species Diversity of AdultNon- Pinus caribaea	
	Tree in <i>Pinus caribaea</i> Plantation	82
4.4	Species, Family, Abundance and Species Diversity of AdultNon- Gmelina	
	aborea Tree in Gmelina aborea Plantation	85
4.5	Species, Family, Abundance and Species Diversity of AdultNon- Theobroma	
	cacao Tree in Theobroma cacao Plantation	87
4.6	Species, Family, Abundance and Species Diversity of AdultNon- Tectona	
	grandis Tree in Tectona grandis Plantation	88
4.7	Family, Family Abundance, Species and Species Richness of Tree Species in	
	Shasha Forest Reserve	90
4.8	Species, Family, Abundance and Tree Species Diversity of Saplings in	
	Secondary Re-growth Natural Forest 98	
4.9	Species, Family, Abundance and Species Diversity of Sapling in Terminalia	
	superba Engl. & Diels Limba Plantation	100
4.10	Species, Family, Abundance and Tree Species Diversity of Saplings in Pinus	
	caribaea Plantation	102

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

4.11	Species, Family, Abundance and Species Diversity of Sapling in Gmelina	
	arborea Plantation Forest	104
4.12	Species, Family, Abundance and Species Diversity of Sapling in Theobroma	
	cacao Plantation Forest	105
4.13	Species, Family, Abundance and Species Diversity of Sapling in Tectona grandis	
	Plantation Forest	107
4.14	List of Tree Species Recorded in Seed Bank across Different Physiognomy	111
4.15	Diversity and Mean Abundance of Mites across Different Physiognomy	135
4.16	The Genera and Abundance of Nematode across Different Physiognomy	141
4.17	The Abundance of Soil Culturable Bacteria and Fungi in the Different	
	Physiognomy	144
4.18	The Diversity of Soil Culturable Fungi across Different Physiognomy	146
4.19	The Diversity of Soil Culturable Bacteria across Different Physiognomy	147
4.20 M	forphological Features of the Bacterial Isolates	
4.21	Litter Quality across Different Physiognomy	151
4.22	Soil pH, Bulk Density and Total Nitrogen of Soil Surface Layers According	
	to Different Physiognomies	153
4.23	Soil Organic Carbon (SOC) Storage at (0-20 cm) in Different Physiognomy at	
	Different Season	155
4.24	Percentage Seasonal Variations in Soil Organic Carbon (SOC) Content in Different	nt
	Physiognomy	156
4.25	Correlation study between explanatory variables in the Secondary Natural	
	Re-growth Forest	160
4.26	Correlation study between explanatory variables in the Terminalia superba	
	Plantation	161

4.27	Correlation study between explanatory variables in the Gmelina arborea	
	Plantation	162
4.28	Correlation study between explanatory variables in the Tectona grandis	
	Plantation	165
4.29	Correlation study between explanatory variables in Theobroma cacao	
	Plantation	166
4.30	Correlation study between explanatory variables in the Pinus caribaea	
	Plantation	167

LIST OF FIGURES

FigureTitle Page

3.1	Map of the study Area in Relation to Nigeria, Osun State and Ife South Local		
	Government area where the Reserve is Located	44	
3.2	Co-location Procedure		50
4.1	Overstory Tree Species Diversity Indices across Different Physiog	nomy	96
4.2	Tree Sapling Diversity Indices across the Different Physiognomy	108	
4.3	Tree Species Abundance across the Strata of the Different Physiognomy		
109			
4.4	Seasonal Variation in the Abundance of Enchytraeids across Differ	rent	
	Physiognomy		
113			
4.5	Total Abundance of Enchytraeids across Different Physiognomy		
114			
4.6	Percentage Seasonal Variation in Enchytraeid Abundance in the Different		
	Physiognomy		
115			
4.7	Seasonal Relative Mean Abundance of Millipede across Different Physiognomy		
116			
4.8	Total Abundance of Millipede across Different Physiognomy		
117			
4.9	Percentage Seasonal Variation in Millipede Abundance in the Diffe	erent	
	Physiognomy	118	
4.10	Seasonal Relative Mean Abundance of Earthworm across Different	t	
	Physiognomy	120	

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

4.11 Total Earthworm Abundance across Different Physiognomy

121

- 4.12 Percentage Seasonal Variation in Earthworm Abundance in the Different Physiognomy
- 4.13 Seasonal Relative Mean Abundance of Beetle across Different Physiognomy
- 123
- 4.14 Total Beetle Abundance across Different Physiognomy
- 124
- 4.15 Percentage Seasonal Variation in Beetle Abundance in the Different Physiognomy
- 126
- 4.16 Seasonal Relative Mean Abundance of Collembola across Different Physiognomy
- 127
- 4.17 Total Abundance of Collembola across the Different Physiognomy

128

4.18 Percentage Seasonal Variation in Collembola Abundance in the Different Physiognomy

129

- 4.19 Seasonal Relative Mean Abundance of Termite across Different Physiognomy131
- 4.20 Total Abundance of Termite across the Different Physiognomy
- 132
- 4.21 Percentage Seasonal Variation in Termite Abundance in the Different Physiognomy

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

133

122

4.22	Seasonal Relative Mean Abundance of Mite across Different Physiognomy			
136				
4.23	Total Mite Abundance across the Different Physiognomy			
137				
4.24	Percentage Seasonal Variation in Mite Abundance in the Different			
	Physiognomy	138		
4.25	Mites Group Abundance across Different Physiognomy			
139				
4.26	Nematode Trophic Group Distribution across the Different Physiognomy 143			
4.27	Percentage Litter Carbon Content across Different Physiognomy			
150				
4.28	Humic Substances Composition in the Different Physiognomies			
158				
4.29a	Results of the Factor Analysis for the DifferentPhysiognomy169			
4.29b	Results of the Factor Analysis for the Different Physiognomy	170		
4.30	LULC Map of Shasha Forest Reserve for 1986			
171				
4.31	LULC Map of Shasha Forest Reserve for 2015			
172				
4.32	Comparison Map for the Year 1986 and 2015			
173				
4.33	Land Use/Land Cover (LULC) Distribution for the Year 1986 and 2015			
174				

LIST OF PLATE

Plate

Title

Page

3.1 Berlese-Tulgren Extractor

53

ABSTRACT

The study identified and compared plant species diversity, soil organism biodiversity and abundance, determined soil organic carbon (SOC) pool and litter biomass carbon together with other litter biochemical composition in six different physiognomies in Shasha Forest Reserve in Osun State. It also investigated the seasonal variation in soil carbon content and established relationship among the explanatory variables with a view to identifying the physiognomy most suitable for afforestation to mitigate climate change.

Physiognomies used for the study were; secondary re-growth natural forest (SRNF), *Terminalia superba* plantation (TSP), *Pinus caribaea* plantation (PCP), *Gmelina arborea* plantation (GAP), *Tectona grandis* plantation (TGP) and *Theobroma cacao* plantation (TCP). Eight plots (25 m x 25 m) were randomly selected in each physiognomy for the study. Tree species were identified and analysed using Shannon-Weiner diversity indices. The below-ground biodiversity assessed were; soil seed bank, earthworm, enchytraeid, millipede, collembola, beetle, termite, nematode, bacteria and fungi using standard methods. Freshly senesced litters were collected using litter trap, dried, ground, sieved and analysed for carbon, nitrogen, lignin and phenolic acid content. Composites soil samples were collected in both dry and wet seasons from three quadrats of 5 m x 5 m, within each 25 m x 25 m plot. The soil samples were analysed for bulk density, organic carbon, total nitrogen, pH and humic substances using standard methods. Data were subjected to appropriate descriptive and inferential statistics.

Floristic diversity indicated that both understory and overstory as well as tree saplings varied among the physiognomies with secondary re-growth natural forest, *T. superba* and *P. caribaea* plantations having the highest tree diversity. *Tectona grandis* (21) and *Theobroma cacao* (13) plantations had the least tree diversity. The belowground diversity showed that

highest tree emergence occurred in TSP (33.3%), while the least occurred in TCP (6.6%), TGP (6.6%) and PCP (6.6%) respectively. The highest enchytraeids (237), termite (1338), earthworm (753) and mite (293) were observed in GAP, while SRNF, TSP and TGP had highest millipede, beetle and collembola abundance respectively. The bacterial feeding nematode was found to be highest in PCP (32), while TSP had the highest fungi feeding nematode (28.6%). The Total Heterotrophic Bacterial and Total Heterotrophic Fungi counts were not significantly different (p>0.05) across the different physiognomies. The concentration of humin and humic acid were highest under SRNF (0.55 \pm 0.02) and TSP (0.31 \pm 0.01) soils respectively, while the highest fulvic acid was recorded in soil under TGP (0.18 ± 0.06). Litter carbon content was higher in PCP ($54.51 \pm 0.02\%$) compared to other physiognomies. The highest content of lignin and phenolic acid were observed under PCP (36.51± 0.73%) and TGP (0.58± 0.01%) and TSP (34.05± 0.03%), while C/N and Lignin/N were highest in TGP. The soil pH in all the physiognomies was slightly acidic (5.83 \pm 0.296-6.23 \pm 0.067). Bulk density was significantly (p>0.05) higher in TGP $(1.21\pm .015 \text{ gcm}^{-3})$ relative to other physiognomies. There was seasonal variation in SOC accumulation, while highest value of SOC (22.65 MgC/ha) was recorded in TSP, the least was recorded in TGP (19.24 MgC/ha).

The study concluded that *Terminalia superba* (a native tree species) and *Pinus caribaea* plantation could be considered suitable for an afforestation project aiming to conserve biodiversity and enhance soil organic carbon (SOC) sequestration.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

The emergence of plantations of different tree species in Nigeria forest reserves may limit the ability of existing protected areas to sequester more carbon (C) and enhance indigenous tree diversity conservation, if the right tree species are not planted to combat carbon (C) emission and biodiversity loss during reforestation programmes. The ecological implications of most tree species that were planted in most forest reserves in the tropic including Nigeria needs to be properly investigated, because earlier selection of most tree for forest plantations purposes were based on efficient timber production (Healey and Gara, 2003).Realizing the threat of global warming resulting from continued increase of carbon dioxide (CO_2) in the atmosphere, the global communities encouraged incentive for forest conservationand afforestation programme to mitigate greenhouse gasses (GHGs) in the atmosphere.

This fueled the interest of many developing nations, including Nigeria, in embarking on massive plantation establishment, which in recent times has created a widespread concern as a result of conversion of primary and secondary forest to plantations of both native and exotic tree species. This practice has encouraged massive taken-over of existing forest reserves and other free areas by plantations of all kinds of tree species, whose relative carbon emission mitigation and native biodiversity conservation ability are yet to be adequately verified. Since it takes more than a tree to perform the ecological function in a forest, relative abundance and productivity of predominant tree species and their traits are probably the principal factor determining soil C dynamics and co-habitation with other neighbouringplant species. Plant species of similar

ecological requirement and functional role is expected to co-occur and jointly directly contribute to ecological functionality of their micro-habitat.However, this shift in tree species during conversion has been perceived to influence plant traits and soil fauna that drive soil C input and output, resulting in the alteration of biologically mediated movement of C within these pockets of forest that are planted. Deyn *et al.* (2008) emphasised on the importance of plant traits in regulating net C storage by controlling C assimilation, transfer, storage and release from soil. Houghton and Goodale (2004) observed that most changes in land use affect the amount of C held in vegetation and soil, either releasing carbon dioxide (CO₂) into or removing it from the atmosphere. Changes in the quality and quantity of plant litter input to the soil environment may be affected by forest management decisions, as is the case of promotion of exotic tree species for reforestation in Nigeria.

Although it is known that trees could sequester C, but there is a strong variation in the carbon sequestrating potential of different tree species. Chapin III *et al.* (2003) asserted that the control of C cycling through ecosystems depends on the physiological properties of plants, animals and soil microorganisms. He noted that the largest soil C accumulation frequently occurs in ecosystem where decomposition is retarded, which may said to occur in litter with high lignin or where microbial degradation is restricted by water. It is worthy to know that the capacity of the forest to remove carbon as CO_2 from the atmosphere and store it in biomass and soil depends on the productive potential of the soil, climate, soil fauna and nature of biomass in terms of quality and quantity (McDonald and Rodgers, 2010). The ability of tree species to contribute to sequestration of soil carbon is a function of ability of individual tree to remain recalcitrant to decomposition, with long turnover time based on the tree biochemical composition (Heal *et al.*, 1997). The input of litter by plants represents the link between the above-ground and below-ground dimensions of terrestrial ecosystems that can influence the

functioning of the whole ecosystem (Faboya *et al.*, 2015). Most widely accepted indices for assessing biological stability include nitrogen (N) concentration, C/N ratio, lignin and/or polyphenol concentration of organic material (Heal *et al.*, 1997). Tree litter qualities, are the decay resistance substances which supply the limiting resources on decomposers. Differences in litter quality among species have been identified as an important mechanism by which tree species may affect C storage (Walela *et al.*, 2010). The magnitude and rate of SOC sequestration with afforestation depends on climate, soil type, nutrient management and tree species (Lal and Follet, 2009).

The relative proportion of carbon constituents and concentration of nutrients and secondary compounds determine the susceptibility of a substrate to attack by decomposers and thus control the rates of decomposition and nutrient release (Heal *et al.*, 1997). Lignin, being an essential biochemical component of plant litter, has being widely used also as an index of organic matter pool. Beside C:N ratio, lignin:N ratio has also been shown to correlate well with decomposition in numerous stands and a predictor of C pool through its effect on humus formation. Lignin in litter is highly resistant to decomposition and therefore, litter with high lignin would have slower decomposition rate (Mafongoya *et al.*, 1998).

At a community level like forest ecosystem, both the quantity and the quality of plant litter have important consequences for the below-ground decomposer system. Porazinska *et al.* (2003) observed that plant traits composition may influence soil decomposer diversity through the diversity of substrates and habitat provided. Power *et al.* (2009) noted that litter chemistry and soil fauna were major factors regulating decomposition and C input in the tropics. Decomposer communities in reaction to litter availability and palatability has a way of influencing C cycling (Hättenschwiler *et al.*, 2005; Wardle 2006), especially during vegetation alteration. According to Goldman *et al.* (2008), improved understanding of how different plantations and other working landscapes affect biodiversity and ecosystem services is critical to forming socially and ecologically sustainable land-use policies. The paucity of information about the quantitative changes in indigenous species diversity and carbon input with shift in tree species during plantation establishment across a range of plantation types remains a serious

information gap that may hamper decision making on sustainable forest management in Nigeria. Despite the importance of plantation forestry to the economy and green initiative project in