

ENVIRONMENTAL, PHYSICO-CHEMICAL AND HYDROGEOPHYSICAL INVESTIGATION OF A WETLAND DUMPSITE IN LAGOS STATE, NIGERIA

By

Linus Obinna ORAKWE

(SCP11/12/H/1335)

B. Sc. (Geology and Mining) (Jos)

M. Sc. (Environmental Control and Management) (Ife)

A THESIS SUBMITTED TO THE INSTITUTE OF ECOLOGY AND ENVIRONMENTAL STUDIES, FACULTY OF SCIENCE, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph. D.) DEGREE IN ECOLOGY AND ENVIRONMENTAL SCIENCE OF THE OBAFEMI AWOLOWO UNIVERSITY ILE-IFE

2016

CERTIFICATION

This is to certify that this research project was carried out by **ORAKWE Linus Obinna (REG NO. SCP11/12/H/1335)** under our supervision, at the Institute of Ecology and Environmental Studies.

		IRSIN'
Prof. I. E. Ofoezie		
(Supervisor)	Signature	Date
Prof. M. O. Olorunfemi	<u> </u>	
(Co-supervisor)	Signature	Date
Department of Geology		
Prof. O. O. Awotoye		
(Director)	Signature	Date
Institute of Ecology and		
Environmental Studies		

DEDICATION

This thesis is dedicated to the Almighty God, and my late father, Mr. Joseph Orakwe who was transited to glory during the course of this research work, for their immeasurable support.

ACKNOWLEDGEMENTS

My profound joy and gratitude goes to God Almighty, my secret and helper; for the immeasurable grace given to me to accomplish this gruesome task. May His name be praised both now and forever, Amen.

With an inexpressible gratitude, I wish to sincerely thank my Supervisor, Prof. I. E. Ofoezie of the Institute of Ecology and Environmental Studies, Obafemi Awolowo University (OAU), Ile-Ife and my Co-supervisor, Prof. M. O. Olorunfemi of the Department of Geology, OAU, Ile-Ife, for their dedication, patience and immeasurable contributions towards the realization of this work.

My thanks also go to the Director of the Institute of Ecology and Environmental Science, Prof. O. O. Awotoye, and other staff of the institute, especially Dr. M. B. Adewole for his encouragement and friendship throughout the period of my Ph. D. programme.

I must say a big thank you to Mr. Oni Ademakinwa of the Department of Geology, OAU Ile-Ife, for his assistance during my field and bench work. Special thanks also go to Mrs Yemisi Ogunlola (the former Director, Legal Services and Advisory, Lagos Waste Management Authority) for her understanding and supports; Mr. Bode Fanimo, Mr. Olumide, Miss Bukola, Brother Niyi, and Ms Izehii Oriaghan for their tireless encouragements. May the Almighty God bless you all.

In a very special way, my deep thanks also go to my wife, Ifeoma Orakwe, my mother, Mrs. Theresa Orakwe, my siblings and their families, especially Mr. Simeon Ugochukwu Aguedu, for their understanding and enduring support throughout my Ph. D. Programme.

Finally, I appreciate the support of all members of Liberation Preaching Team and Balm of Gilead Community, Catholic Charismatic Renewal of Nigeria (CCRN) for their prayers and spiritual assistance.

Orakwe L. O.

TABLE OF CONTENTS

PAGE TITLE Title Page i Certification ii Dedication iii Acknowledgement iv Table of Contents v List of Figures viii List of Tables Х List of Plates xii List of Abbreviations and Acronyms xiii Abstract XV

CHAPTER ONE: INTRODUCTION

1.1.	Background to the Study	1
1.2	Statement of Research Problem /Justification of Study	3
1.3	Aim and Objectives of the Study	4
1.4	Research Constraints	5

CHAPTER TWO: LITERATURE REVIEW

2.0	Introduction	6
2.1	General Concept of Waste	6
2.2	Solid Waste	8
2.3	Solid Waste Generation and Management Strategies	9
2.4	Open Dump and Landfill Sites	22
2.5	Geology of Nigeria	24
	2.5.1 Crystalline Basement Complex	24
	2.5.2 The Jurassic Younger Granite and the Tertiary- Quaternary Volcanic	26
	2.5.3 The Cretaceous –Recent Sediments	26
2.6	Regional Geology of the Dahomey Basin	27
	2.6.1 Abeokuta Group	31
	2.6.2 Imo Group	33
	2.6.3 Oshosun Formation	34
	2.6.4 Ilaro Formation	34
	2.6.5 Coastal Plains Sands (CPS)	34
2.7	Local Geology and Hydrology of the Study Area	35
2.8	Regional Hydrogeological Setting	37
2.9	Sources and Factors Influencing Groundwater Contamination	40

2.10	Application of Geophysical Method in Hydrogeological Investigation	
	and Environmental Impact Assessment of Waste Management Sites	43
2.11	Physicochemical Investigation of Underground Water Samples from	
	Waste Management Sites	46
СНАР	PTER THREE: MATERIALS AND METHODS	
3.1	The Study Area	49
	3.1.1 Geographic Description and Physiography of the Study Area	49
	3.1.2 Description of Current Operations in the Study Area	49
3.2.	Methods of Study	49
	3.2.1 Desktop and preliminary field activities	54
	3.2.2 Detailed field work	54
3.3	Statistical Analysis	72
СНАР	PTER FOUR: RESULTS	
4.1	Hydraulic and Geotechnical Characteristics of Soil	73
4.2	Lithological Units	76
4.3	Geoelectric Characteristic of the Study Area	79
4.4	Impact Assessment of Geoelectric Characteristics	84

4.5	Groun	dwater Hydraulic Head	87
4.6	Genera	al Properties of Water Samples	92
СНА	PTER F	FIVE: DISCUSSION	
5.1	Introd	uction	101
5.2	Influe	nce of Sub-soil and Lithologic Units to Wetland Development	
	and Le	eachate Transmission Potential	101
5.3	Deline	eating Wetland Contamination Plume through Geoelectrical Survey	102
5.4	Hydro	logical Flow Direction and Effect on Wetland Leachate	
	Transr	mission Potential	103
5.5	Physic	cochemical and Bacteriological Properties of Water Resources	
	within	and around the Epe Wetland Dumpsite	104
	5.5.1	Wetland effects on contamination potentials of the epe dumpsite	104
	5.5.2	Seasonal patterns of contamination potential of the Epe	
		wetland Dumpsite	107
	5.5.3	Location of wetland dumpsite in relation to quality of surrounding	
		water resources	110

CHAPTER SIX: SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.1 Summary 11

6.2	Conclusion	115
6.3	Recommendation	116
REFE	RENCES	118
APPE	NDICES	139
	Br.	

LIST OF FIGURES

Figure	Description	Page
2.1	Technology Gradient for Waste Management	13
2.2	Waste Management Hierarchy	14
2.3	Geological Map of Nigeria	25
2.4	East -West Geological Section Showing Position, Extent and	
	Sediment Thickness Variations in the Onshore Dahomey	
	Basin and the Upper Part of the Niger Delta	28
2.5	Stratigraphy and Lithologic Features of Dahomey Basin	30
2.6	Generalized Stratigraphic Cross Section (N-S) across the	
	Dahomey Basin	32
2.7	Modified Geological Map of Part of South West Nigeria	
	Showing the Area of Study	36
3.1	Map of Lagos State Showing Epe Local Government and	
	the Study Area	50
3.2	Topographical Map showing Survey Details on the Active	
	Portion of the Dumpsite	51
3.3	Composite Reconnaissance Map Showing Water and Soil	
	Sampling Points and Traverse Lines for Resistivity Survey	55

OBAFEMI AWOLOWO UNIVERSITY xii

3.4	Dipole-Dipole Field Array	66
3.5	Principle of Dipole-Dipole Field Measurements	67
3.6	The Schlumberger Electrode Array	69
3.7	Positions of Four Boreholes interchangeably used for	
	Hydraulic Head and Flow Direction in the Epe Dumpsite	70
4.1	Study Area Showing Location of New and Existing Boreholes,	
	Dumpsites and Preferred Orientations (WNW – ESE and	
	SSW – NNE Directions)	77
4.2a	Correlation of Borehole Lithologic Logs along	
	WNW –ESE Direction	78
4.2b	Correlation of Borehole Lithologic Logs along	
	SSW –NNE Direction	78
4.3	(a) Field Pseudosection (b) Theoretical Pseudosection and	
	(c) 2-D Resistivity Structure along Traverse TR 5	80
4.4	(a): Field Pseudosection (b) Theoretical Pseudosection and	
	(c) 2-D Resistivity Structure along Traverse TR 4	81
4.5	(a) Field Pseudosection (b) Theoretical Pseudosection and	
	(c) 2-D Resistivity Structure along Traverse TR 3	82
4.6	VES Type Curves within the Unimpacted Section of the	

	Study Area	83
4.7	(a): Field Pseudosection (b) Theoretical Pseudosection and	
	(c) 2-D Resistivity Structure along Traverse TR 1	88
4.8	(a): Field Pseudosection (b) Theoretical Pseudosection and	
	(c) 2-D Resistivity Structure along Traverse TR 2	89
4.9	Typical VES Type Curves within the Waste Dump Area	90
4.10	Groundwater Flow Direction Determined from	
	Hydraulic Heads of Four Boreholes	93
08		

LIST OF TABLES

Table	Description	Page
2.1	Summary of Solid Waste Management (SWM) Options	15
2.2	Aquifer Distribution in the Eastern Dahomey Basin	38
3.1	Geographic Coordinates, Distances and Depths of Water Sampling	
	Points	57
3.2	Methods for the Analysis of Physical Parameters of Water Quality	58
3.3	Titrimetric Methods Used in the Analysis of some Chemical	
	Parameters of Water Quality	59
3.4	Instrumentation Methods Used in the some Chemical Analyses	
	of Water Quality Parameters	60
3.5	Borehole Designation, Locations, and Profile Depths for Soil Sampling	61
4.1	Hydraulic/Geotechnical Characteristics of Profile Soil	
	Samples Collected from Boreholes in the Study Area	74
4.2	Descriptive Statistics of Soil Geotechnical/Hydraulic Parameters	75
4.3	Summary of the VES Interpretation Result and their Lithologic	
	Unit Classification	85
4.4	Groundwater Hydraulic Head (GHH) of Boreholes BH 1 – BH 4	91
4.5	Physic-chemical and bacteriological characteristics of water by	

	station and Post hoc test for sources of disparity in concentration	94
4.6	Seasonal Variation in the physic-chemical and bacteriological	
	characteristics of water	96
4.7	Annual Variation in the physic-chemical and bacteriological	
	characteristics of water	98
5.1	Overall Mean Value of each Parameter Compared to Acceptable	
	Standard Limits for Wastewater Effluent Discharge set by	
	Regulatory Organisations	105
5.2	Overall Mean Value of each Parameter Compared with Results of	
	Previous Studies Carried out in the Upland art of Lagos State	106
5.3	Comparisons of Physicochemical and Bacteriological Properties	
	of Water Based on Temporal and Spatial Variations	109

LIST OF PLATES

Plate	Description	Page
3.1a	A Compactor Truck Tipping at the Platform at Epe Dumpsite	52
3.1b	Activities on the Tipping Platform at Epe Dumpsite	52
3.2a	The Wetland Reclamation by Refuse Dumping	53
3.2b	The Wetland Reclamation by Refuse Dumping	53

LIST OF ABBREVIATIONS AND ACRONYMS

Acronyms		Description
B/D	-	Bulk Density
BH	-	Borehole
BOD	-	Biological Oxygen Demand
Cc	-	Coefficient of Conformity
CPS	-	Coastal Plains Sands
CS	-	Coarse Sand
D/D	-	Dry Density
DEC	-	Dokay Engineering Consultancy
DEFRA	-	Department for Environment Food and Rural Affairs
Df	-	Degree of Freedom
DO ₂	-	Dissolved Oxygen
DSWL	$\langle \cdot \rangle$	Depth to Static Water Level
DSWL		Depth to Static Water Level
EC	-	Electric Conductivity
ECE	-	European Commission Environment
EGL	-	Elevation of the Ground Level
EIONET	-	European Information and Observation Network

OBAFEMI AWOLOWO UNIVERSITY xviii

FS	-	Fine Sand
GHG	-	Green House Gases
GHH	-	Groundwater hydraulic head
GW	-	Ground water
GWC	-	Groundwater Controlled sample
GPS	-	Global Positioning System
HH	-	Hydraulic Head
HP	-	Horizontal Profiling
НН	-	Hydraulic Head
ITRC	-	Interstate Technology & Regulatory Council
LAWMA	-	Lagos Waste Management Authority
LGA	-	Local Government Area
MBT	-	Mechanical and Biological Treatment
MRF	-	Material Recovery Facility
MS	- <	Medium Sand
MSW	-	Municipal Solid Waste
NES		Nigerian Environmental Society
NMC	-	Natural Moisture Content
OWMC	-	Ontario Waste Management Corporation's
РС	-	Productivity Commission
PCMS	-	Prakriti, Centre for Management Studies

SG	-	Specific Gravity
SPSS	-	Statistical Package for Social Sciences
SW	-	Surface Water
SWC	-	Surface Water Control Sample
SWM	-	Solid Waste Management
ТС	-	Total Coliform
TDS	-	Total Dissolved Solids
TEM	-	Transient Electromagnetic
TH	-	Total Hardness
THB	-	Total Heterogeneous Bacteria
TR	-	Traverse
TSS	-	Total Suspended Solids
USCS	-	Unified Soil Classification System
USDER	-	United State Department of Environmental Resources
USEPA	- 6	United State Environmental Protection Agency
VES		Vertical Electric Soundings
VR		Void Ratio
WHO	-	World Health Organisation
2D	-	Two Dimension

ABSTRACT

Engineering geological, physicochemical and hydrogeophysical investigations were carried out on a wetland dumpsite in Epe, Lagos State, Nigeria. This was with a view to investigating the impact of the dumpsite leachate on the physicochemical properties of surface and groundwater in the typical wetland environment.

2-D Dipole-Dipole profiling and 1-D Vertical Electrical Sounding (VES) techniques were carried out along five traverses established within the study area. The 2-D imaging adopted 10 m inter-electrode spacing and expansion factor (n) varying from 1-5. The data acquired were inverted into 2-D resistivity structures using the DIPRO for window V. 4.0 software. The VES were conducted with the Schlumberger array. The depth sounding curves were interpreted quantitatively using the partial curve matching technique and computer assisted 1-D forward modeling with the RESIST software. Geoelectric sections were generated from the VES interpretation results. Eighteen (18) soil profile samples were collected from four (4) boreholes. These samples were analyzed for hydraulic/geotechnical properties using standard methods. Forty (40) water samples were collected from 10 stations (including 2 controls) comprising 5 each of surface and groundwater sources during the rainy and dry seasons of 2014 and 2015. The samples were analyzed for physicochemical and bacteriological parameters using relevant reagents and equipments including colorimeter, turbidity meter, UV-Visible Spectrophotometer, and Atomic absorption Spectrophotometer.

The lithological log revealed that the study area was underlain by intercalations of sand and clayey sand. The subsoil was characterised by low bulk density (mean of 1.89±0.162 g/cm³);

moderate porosity and permeability (mean of $37.84\pm8.42\%$ and $3.0 \times 10^{-4}\pm 1.1 \times 10^{-4}$ cm/sec): low moisture content (mean of 17.57±15.18%); and fine to medium grained texture. The coefficient of uniformity value of < 6 was recorded for these samples. AK and KQ type curves with increasing layer resistivities at shallow depth were observed within virgin areas while the H, QH and HA with decreasing layer resistivities within the upper two to three geoeletric layers were observed in the premises of the dumpsite. VES interpretation results delineated 3 - 4subsurface layers. 2-D images also delineated two geologic layers with resistivity values 212 to 2165 Ω m. These values generally decrease towards the waste dump and unreclaimed wetland portion. South - southwestward groundwater flow direction from the waste dump was established. The overall mean and standard deviation of physical parameters were Temperature 27.6±1.4°C; Turbidity 21.0±17.0 NTU; Conductivity 905.8±1038.6 µS/cm; TDS 463.6±523.5 mg/L; and TSS 30.2±39.4 mg/L. Chemical parameters were pH 6.2±0.6; Acidity 169.0±181.4 mg/L; Hardness 645.2±782.5 mg/L; DO 2.1±0.8 mg/L; and BOD 212.0±83.8 mg/L. Mean values for major ions in mg/L were Na⁺62.1±32.2; K⁺ 11.7±4.6; Ca²⁺ 279.3±352.9; Mg²⁺ 103.1±127.1; NO₃⁻ 42.3±29.8; SO₄²⁺129.8±107.9; PO₄²⁻ 29.8±26.2; and Cl⁻ 285.5±279.2. Mean heavy metals concentrations in mg/L were Cr 0.8±0.8; Fe 1.8±2.0; Pb 0.3±0.3; Ni 0.1±0.1; Mn 3.7±6.3; Cd 0.0±0.0; Co1.0±0.8; Cu 0.3±0.3 and Zn 8.8±5.7. Bacteriological parameters in cfu/ml were THB 2664500.0±1811930.0 and TC 4477.4±7081.0.

The study concluded that shallow water table and thick column of unconsolidated sandy formation typical of wetland condition influenced waste dissolution and migration of leachate thereby seriously polluting water resources around the investigated dumpsite.

CHAPTER ONE

INTRODUCTION

1.2. Background to the Study

One of the major challenges of many emerging cites of the world is how to develop an effective and sustainable Municipal Solid Waste (MSW) Management System. Developing such systems have become topical and constitute major financial budgets of metropolitan cities and nations. If adequately implemented to comprise resource recovery and other associated safety measures, these systems will help to minimize negative impacts resulting from MSW on natural resource, esthetic value, land space, human health and environmental status (Productivity Commission, 2006).

In line with the goals of sustainable development, providing sustainable waste management system entails systematic process of meeting the needs of today in a manner that supports waste minimization, resource recovery for reuse or recycling and sanitary disposal of residual components in order to protect the environment for the future generations. This concept is globally accepted and enforced by different governments and non-governmental organizations. It promotes increasing standard of living and strikes a proper balance between development and quality environmental status; such that a quality environment in-turn sustains biodiversity and socio-economic activities (NES, 2006; Zimmerman, 2008).

As an important component of sustainable waste management system, providing adequate disposal arrangement is necessary for waste fractions not captured by available resource recovery facilities. Landfill, though occupying the bottom position in waste

[©] Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

management hierarchy, is one of such disposal facility that is indispensable, because most technologies used in the waste management sector produce residual components that must be contained in final repository facilities like sanitary landfills. Therefore, till today, adopting best practice in landfill system has remained important; especially in nations where such unrecovered waste components are still disposed in non-engineered dumpsites, thereby constituting problems to human health and the environment.

Nigeria, like most developing nations witness problems of uncontrolled dumping of solid waste in all States of the Federation. These problems include degradation of esthetic value of cities, leachate contamination of underground and nearby surface water resources, increase in population of insects and rodents, offensive odour and flooding due to blocked canals. The foregoing problems are poorly addressed at all levels, by placing emphasis on the removal and transportation of solid waste from sites where they pose ugly sights or blocked drainage channels to remote areas where they cannot be seen nor their associated odour perceived.

Lagos State, the economic and financial capital of Nigeria, is one of the most populous States in the country. According to Ojo and Bowen (2014), although Lagos State is the smallest state in Nigeria, with an areal extent of 356,861 hectares of land mass, about one-fifth (75,755 hectares) are wetlands. It has a population of about 12.2 million inhabitants, estimated from the 2006 population figure using an annual growth rate of 3.06% for the State (Okafor *et al.*, 2007). According to the Lagos Waste Management Authority (LAWMA) 2014, the State generates over 9,000 metric tons (MT) of solid waste per day. Providing efficient and sustainable management system to contain this amount of waste is a big challenge to the State Government and other

stakeholders of waste management in the State. One of such challenges is in the area of securing landmass to locate new waste management facilities, especially landfills.

Preliminary investigations showed at least seven different dumpsites (Solous 1 - 4, Abulegba, Ewuelepe and Olushosun) in Lagos State. These dumpsites are mainly located on the upland part of Lagos State, until February 12th, 2009 when the State through LAWMA considered locating new landfills on low lying wetlands of Epe and Badagry Local Government Areas (LAWMA, 2011). Though it was planned that these new landfills will be engineered, with adequate attention paid to the geology of the area where they will be located, the Epe Landfill has started receiving waste with no such consideration or construction of leachate control system; hence, the need to understand the peculiarities of these *wetlands* viz-a-viz solid waste disposal operations in Lagos State.

Wetlands being land areas permanently or seasonally saturated with water are distinct ecosystem with peculiar characteristics. They are distinguished from other land forms or water bodies by their characteristic vegetation of aquatic plants, adapted to its unique hydric soil (Wikipedia, 2015). The Epe Wetland, like other wetlands across the world is vital to environmental sustainability and green infrastructural development. According to Acquavella (2006), wetlands are the worst type of ecosystems for dumping of refuse; as the result could be devastating to both people that live near these dump sites as well as the rare and narrowniched ecosystems they habour.

1.2 Statement of Research Problem /Justification of Study

Until recent when a dumpsite was established on low lying wetland, refuse dumping in Lagos State had been upland. The paradigm shift has been a source of concern, because the policy violates classical criteria in landfill location. According to USEPA's code of Federal regulations, landfills should not be built near locations that are not geologically suitable, including faults,

flood plains, *wetlands*, or any other restricted area (USEPA, 2014). Standards and Regulations of British Columbia in Canada also stipulated that landfills should never be built on wetlands and that such