

HEAVY METAL SPECIATION IN ROADSIDE SURFACE SOILS AND VEGETATION AS A MEASURE OF ENVIRONMENTAL POLLUTION IN ILE-IFE, OSUN STATE.

BY

OGUNWALE Taiwo Olusegun

SCP10/11/R/0088

B.Sc. (Environmental Management and Toxicology)

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc.) IN ENVIRONMENTAL CONTROL AND MANAGEMENT TO THE INSTITUTE OF ECOLOGY AND ENVIRONMENTAL STUDIES, FACULTY OF SCIENCE, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA.

2014

CERTIFICATION

We certify that this research work was carried out by OGUNWALE Taiwo Olusegun with registration number (SCP10/11/R/0088) under our supervision, and approved in accordance with the partial fulfillment of the requirements for the award of Master of Science (M.Sc.) degree in Environmental Control and Management of the Obafemi Awolowo University, Ile - Ife, Osun State, Nigeria.

Prof. A. O. Ogunfowokan Supervisor Dr. J. A. O. Oyekunle Co-Supervisor

Prof. O. O. Awotoye

Chief Examiner

DEDICATION

This work is dedicated to the Almighty God for His love, faithfulness, kindness, provision and protection uncommonly experienced in my life especially throughout the period of this study.

ACKNOWLEDGEMENT

I would like to thank my supervisors, Prof. A. O. Ogunfowokan and Dr. J. A. O. Oyekunle for their guidance, support and great patience during the course of my research work.

Prof. Ogunfowokan, you often helped me above and beyond the duties of mentorship, Thank you. Dr. Oyekunle, you know very well that without your help and supervision, I would not have finished this research. I really appreciate the long hours you spent with me discussing and improving my research, lot of thanks. Special thanks are also extended to the members of staff of the Institute of Ecology and Environmental Studies who are: the Director, Prof. O. O. Awotoye, Prof. A. T. Salami, Prof. I. E. Ofoezie, Dr. M. B. Adewole, Dr. (Mrs) O. O. Okoya, Dr. O. J. Mattew, Dr. (Mrs) Funmi Makinde and other members of the non- academic staff for their contributions throughout the programme.

Furthermore, much gratitude is extended to my senior colleagues in the Laboratory, particularly Mr. Oyeku Timothy, Mr. Akindolani Lekan, Mr. Obisanya, Mr. Shola Adelowotan, Mr. Tony, Mr. Bankole, Mr. Abey Joshua, for their assistance and encouragement during sequential extraction of my samples.

My special thanks go to the technologists, Mr. Rahman and Mr. Duro, of Chemistry Department, for the Laboratory assistance afforded me during the project. Special thanks go to Sister Ogundeji Oluseun, Brothers Deyemi, Tolu, Segun Ajana, Dare, Fope, Yemi, Charle, Pastor Bayo Bello, Pastor Samuel Aina, Sister Temmy Ojuolape, Brother Olatoberu Tope, Brother Jaleyemi Lekan, Brother Oyekan Olumide, Charles Saba, Kolenko, Dongee and Elder Akinsola Ayo for their help during the course of this study.

Finally, I am equally grateful to my siblings who provided the needed support during the programme.

TABLE OF CONTENTS

TITLE	i
CERTIFICATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	xii
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS	xvii
ABSTRACT	xxii
CHAPTER ONE	PAGE
1.0 INTRODUCTION	
1.1 Background to the Study	1
1.2 Statement of Research Problem	6

1.3	Scope of the Study	6
1.4	Specific Objectives of Research	7
СНА	PTER TWO	
2.0	LITERATURE REVIEW	
2.1	Road and its Ecological Effect	8
2.2	Environmental Pollution	10
2.3	Heavy Metals	11
2.4	Sources of Pollution by Heavy metals in the Environment	11
2.4.1	Heavy Metals in Air	13
2.4.2	Heavy Metals on Land	15
2.4.3	Heavy Metals in Water	17
2.4.4	Heavy Metals in Soils	19
2.4.5	Heavy Metals in Plant	21
2.4.6	Heavy Metals in Human	22
2.5	Commonly Encountered Heavy Metals	23
2.5.1	Lead	23

2.5.2	Cadmium	28
2.5.3	Nickel	33
2.5.4	Copper	37
2.5.5	Zinc	40
2.5.6	Manganese	45
2.5.7	Aluminium	50
2.6	Bioavailability Factor	53
2.7	Mobility of Heavy metals	55
2.7.1	Methods of Trace Metals Mobility in the Soil	56
2.7.2	Effect of Organic Compound	57
2.7.3	Soil Nature and Classification	59
2.7.3.	1 USDA Textural Soil Classification	59
2.7.3.2	2 Unified Soil Classification System	62
2.7.3.	3 AASHTO Classification System	62
2.8	Speciation and Toxic Metal Forms	63
2.9	Determination of Chemical Partitioning of Heavy metals	65
CHAI	PTER THREE	

3.0

MATERIALS AND METHODS

3.1	Description of the Study Area	67
3.2	Soil Collection and Preparation	70
3.3	Plant Collection and Preparation	70
3.4	Sterilization of Apparatus	71
3.5	Reagents Used and their Sources	71
3.6	Determination of Total Trace Metals in Soil	72
3.7	Sequential Extraction of Al, Cd, Cu, Mn, Ni, Pb and Zn from Roadside Surface So	ils 72
3.7.1	Exchangeable Phase (F1)	73
3.7.2	Carbonate – bound (F2)	73
3.7.3	Fe – Mn oxides Bound (Reducible) (F3)	73
3.7.4	Bound to Organic Matter (oxidizable) (F4)	73
3.7.5	Residual Fraction (F5)	74
3.8	Mobility Factor (MF) Determination	74
3.9	Contamination Assessment Methods of Roadside Surface Soils and Plant	74
3.9.1	Enrichment factor (MF)	75

OBAFEMI AWOLOWO UNIVERSITY ix

3.9.2 Contamination Index (CI)	76
3.9.3 Determination of Geoaccumulation Index (I-geo)	78
3.9.3 Pollution Load Index (PLI)	80
3.9.4 Coefficient of Variation (CV)	80
3.10 Quality Assurance Protocol	80
3.10.1 Blank Determination	80
3.10.2 Recovery Analysis	80
3.10.3 Digestion of Plant Samples	81
3.10.4 Determination of Tranfer Factor (TF) in Soil- plant System	82
3.11 Atomic Absorption Spectrophotometric Determination of Heavy Metal	82
3.12 Physico – chemical Parameter of Soil	83
3.12.1 pH Determination	83
3.12.2 Organic Matter Determination	83
3.12.3 Particle Size Distribution	83
3.12.4 Electrical Conductivity	84
3.12.4 Statistical Analysis of Data	84
CHAPTER FOUR	

4.0 RESULTS AND DISCUSSION

4.1	Validation of Analytical Procedures Adopted	85
4.2	Physico-Chemical Parameters of Surface Soil Samples	87
4.2.1	Soil pH	87
4.2.2	Soil Electrical Conductivity	88
4.9.3	Soil Texture	91
4.9.4	Percentage Organic Matter	93
4.3	Total Metal Determination in the Roadside Surface Soils	94
4.4	Speciation of Metals in Roadside Surface Soils	104
4.5.1	Mobility factor (%MF) of the Metals in the Roadside Surface Soil	
	(Wet Season)	124
4.5.2.	Mobility factor (%MF) of the Metals in the Roadside Soil (Dry Season)	129
4.6.	Contamination Assessment Results of Roadside Surface Soil Samples	135
4.6.1.	Enrichment Factor (EF) of Heavy Metal	135
4.6.2	Contamination Factor or Index	138
4.6.3	Pollution Load Index	142

4.6.4	Geoaccumulation Index (I-geo) of Trace Metals along the Roadside	
	Surface Soil	144
4.7.	The relationship Between Soil Properties and Trace Metal Uptake by Plant	147
4.8	Concentration of Element in Plant Parts	147
4.9.	Trace metals in Roadside Vegetation	149
4.10	Statistical Analyses and Data Interpretation	170
4.10.1	Statistical Analysis of Variance (ANOVA) of Total Metal Determination	170
4.10.2	Analysis of Variance of Metal Speciation in the five Geochemical Fractions	
	in the Study Area	174
4.10.3	Mean Separation of Metal Speciation using Duncan Multiple Range Test (DMRT)	176
4.10.4	Seasonal Mean Separation of Metal Speciation using Ducan Multiple Range Test	178
4.10.5	Analysis of Variance (ANOVA) for Mobility Factor of Elements in the Study A	rea 180.
4.10.6	The transfer Factor (TF) of Element from Soil to Plant using One-Way	
	Analysis of Variance	185

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	189
5.2	Recommendations	191
REF	ERENCES	193
	OBHELMIAMOLOW	

LIST OF FIGURES

FIGURE	PAGE
Fig.2.1: Showing Atmospheric Portion of Global Cadmium Cycle	30
Fig.2.2: Showing Atmospheric Portion of Global Nickel Cycle	36
Fig.2.3: Showing USDA Textural Classification of Soil	61
Fig.3.1: A Map of Ile – Ife Showing the Sites of Sampling	68
OBHH .	

LIST OF TABLES

TABLE	PAGE
Table 2.1: Natural Versus Man-made Circulation of Some Heavy Metals	
throughout the World Environment	16
Table 2.2: Toxic Metals in Effluent from Selected Industries	18
Table 2.3: The Percentage of Lead Bound to each Soil Fraction	27
Table 2.4: Natural Zinc Level (Total Zinc) in the Environment	43
Table 2.5: Average Levels of Manganese in Air	49
Table 3.1: Showing Geographical Locations of the Sampling Sites	69
Table 3.2: Background Levels of Metals in Shales/ rock	77
Table 3.3: Geoaccumulation Index Classes	79
Table 4.1: Calibration Curve Data and Percentage Recovery (%R) for Plant and	
Soil Samples	86
Table 4.2: Physico-chemical Parameters of Roadside Surface Soil Samples within	
the Vicinity of Ile-Ife Area for Wet Season	89
Table 4.3: Physico-chemical Parameters of Roadside Surface Soil Samples within	

the Vicinity of Ile-Ife Area for Dry Season	90
Table 4.4: Physico-chemical Parameters of Soil Samples (Wet and Dry Seasons)	92
Table 4.5: Total Metal Levels in the Soil of the Study Area (Wet Season)	96
Table 4.6: Total Metal Levels in the Soil of the Study Area (Dry Season)	97
Table 4.7: Comparison of Trace Metal Levels in Soil Analysed in this Study with	
the Levels in Similar Studied ($\mu g/g$)	103
Table 4.8: Percentage of Metal Associated with Fractional Forms in Roadside	
Surface Soils of Ile –Ife in this Study (Wet and Dry Seasons)	105
Table 4.9: Aluminium Level ($\mu g/g$) in Different Chemical Fractions in Roadside	
Surface Soil Samples in the Study Sites (Wet and Dry Seasons)	108
Table 4.10: Cadmium Level ($\mu g/g$) in Different Chemical Fractions in Roadside	
Surface Soil Samples in the Study Sites (Wet and Dry Seasons)	111
Table 4.11: Copper Level ($\mu g/g$) in Different Chemical Fractions in Roadside	
Surface Soil Samples in the Study Sites (Wet and Dry Seasons)	113
Table 4.12: Manganese Level ($\mu g/g$) in Different Chemical Fractions in Roadside	
Surface Soil Samples in the Study Sites (Wet and Dry Seasons)	115
Table 4.13: Nickel Level ($\mu g/g$) in Different Chemical Fractions in Roads	ide
Surface Soil Samples in the Study Sites (Wet and Dry Seasons)	117

Table 4.14: Lead Level ($\mu g/g$) in Different Chemical Fractions in Roadside Surface	
Soil Samples in the Study Sites (Wet and Dry Seasons)	120
Table 4.15: Zinc Level ($\mu g/g$) in Different Chemical Fractions in Roadside Surface	
Soil Samples in the Study Sites (Wet and Dry Seasons)	122
Table 4.16: Mobility factor (%MF) of Metals in the Sampling Location (Wet Season)	128
Table 4.17: Mobility factor (%MF) of Metals in the Sampling Location (Dry Season)	133
Table 4.18: Enrichment factor of Trace Metals for Wet and Dry Seasons	136
Table 4.19: Contamination Index or Factor of Metals in the Soils of the Study Area	
(Wet and Dry Seasons)	140
Table 4.20: Pollution Load Index or Factor of Trace Metals for Wet and Dry Seasons	
across the Sampling Points	143
Table 4.21: Assessment of Trace Metals Contamination using Geoaccumulation	
Index (I-geo) for Wet and Dry Seasons ($\mu g/g$)	145
Index (I-geo) for Wet and Dry Seasons ($\mu g/g$) Table 4.22: Range of Metals Concentration ($\mu g/g$) in Plant Parts	145 148

Table 4.24: Transfer factor (TF) of Trace Metals from Soil to Plant in the Study

Locations (Dry Season) (µg/g)	165
Table 4.25: Analysis of Variance of Total Metal Determination	171
Table 4.26: Seasonal Mean Separation for Total Metal Determination using Duncan	
Multiple Range Test	173
Table 4.27: Analysis of Variance of Metal Speciation across the Geochemical	
Fractions in the Study Area	175
Table 4.28: Mean Separation of Metal Speciation using Duncan Multiple Range Test	
(DMRT)	177
Table 4.29: Seasonal Separation of Metal Speciation using Duncan Multiple	
Range Test (DMRT)	179
Table 4.30: Analysis of Variance for Mobility factor of Elements in the Study Area	181
Table 4.31: Mean Separation of Mobility factor across the Sampling Sites	
Using Duncan Multiple Range Test (DMRT)	183
Table 4.32: Seasonal Mean Separation of Mobility factor using Duncan Multiple	
Range Test (DMRT)	184
Table 4.33: Transfer factor (TF) of Elements from Soil to Plants using One-Way	
Analysis of Variance	187

Table 4.34: Mean Separation of Transfer factor (TF) Of Elements from Soil to Plants

across the Plant Parts using Duncan Multiple Range Test (DMRT) 188

OBHERMIANO UNIVERSITY

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

%R	Percentage Recovery
µg/l	microgram per litre
$\mu g/m^3$	mcrogram per cubic meter
μm	micrometer
μS/m	Micro Siemens per meter
AAS	Atomic Absorption Spectrometer
AASHTO	American Association of State Highway and Transportation Official
ATSDR	Agency for Toxic Substances and Disease Registry (USA)
BCF	bioconcentration factor
BDH	British Drug House
CF	Contamination Factor
cv	Coefficient of variation
DETR	Department of Environment, Trade and the Region
Directive EC	Directive European Communities
DTPA	diethylenetriaminepentaacetic acid

EDTA	ethylenediaminetetraacetic acid
Eh	Redox Potential
GPS	Geographic Positioning System
H ₃ PO ₄	Orthophosphoric Acid
HNO ₃	Trioxonitrate(v) Acid
НОАС	Acetic Solution
HSDB	Hazardous Substances Data Bank
IARC	International Agency for Research on Cancer
I-geo	Geoaccumulation Index
ILO	International Labour Organisation
IPCS	International Programme on Chemical Safety
Maneb	Manganese ethylene-bis-dithiocarbamate
MF	Mobility Factor
MgCl ₂	Mangnesium (II) Chloride
MMT	methylcyclopentadienyl Manganese Tricarbonyl
Mn ₃ O ₄	Manganese Tetraoxide
MnCO ₃	Manganese (II)trioxocarbonate(IV)

- MnSO₄ Manganese (II) tetraoxosulphate(VI)
- MSWI Municipal Solid Waste Incinerator
- NaOAC Sodium Acetate Solution
- NAS National Academy of Science
- NH₂OH.HCl Hydroxylamine Hydrochloric Acid
- NHOAC Ammonia Acetate
- NICNAS National Industrial Chemical Notification and Assessment Scheme
- NOEC No Observed Effect Concentration
- NRC National Research Council
- OECD Organisation for Economic Co-operation and Development
- $Pb(C_2H_5)_4$ Tetraethyllead(iv)
- PbBr₂ Lead (II)bromide
- PbBrCl₂ Lead (II) bromochloride
- PbCl₂ Lead (II) chloride
- PbCO₃ Lead (II) trioxocarbonate(IV)
- PbO Lead (II) oxide
- PbS Leadsulfide

PbSO ₄	Lead (II) tetraoxosulphate(VI)
PEC	Predicted Environmental Concentration
pg/g	picogram (10 ⁻¹²) per gram
рН	Potential of hydrogen (Hydrogen ion index)
PLI	Pollution Load Index
PM 2.5	particulate matter with an aerodynamic diameter less than or equal to $2.5 \mu m$
PNEC	Predicted No Effect Concentration
ROS	Reactive Oxygen Species
s.d	standard deviation
SE	Water soluble plus exchangeable
TEL	Tetraethyllead(IV)
TF	Transfer Factor
TRI	Toxics Release Inventory (USA)
UKEPA	United Kingdom Environmental Protection Agency
UNEP	United Nations Environment Programme
USCS	Unified Soil Classification System
USDA	United State Department of Agriculture

- USEPA United States Environmental Protection Agency
- WHO World Health Organisation
- WSA Weakly Specifically Adsorb

ABSTRACT

This study investigated the speciation, mobility and pollution indices of heavy metals in the roadside surface soils of Ile-Ife and the translocation factor in some of the associated plants. This was with a view to evaluating the heavy metal pollution status of the roadside surface soils of the study area.

Ten roadside surface soil samples were collected for each of the wet and dry seasons. The soil samples were dried to constant weight and powdered using agate mortar and pestle. Sequential extraction procedure was used to fractionate seven heavy metals (Al, Cd, Cu, Mn, Ni, Pb and Zn) in the soil samples into five operationally defined geochemical fractions (exchangeable, bound to carbonates, bound to iron and manganese oxides, bound to organic matter and residual). The soil physico-chemical parameters such as pH, electrical conductivity, organic matter content and particle size distribution were also determined for each season. The concentrations of the metals studied were quantitatively determined using Atomic Absorption Spectrophotometre (AAS). Quality control measures included blank determination, recovery analysis and calibration of standards. Descriptive and inferential statistical methods were adopted for data analyses.

Among the five chemical fractions, organic matter fraction had the highest pool for the seven metals studied for both seasons. Order of decreasing bioavailability of the metals followed the trend: Organic matter > residual >exchangeable> carbonates bound >bound to iron and manganese oxides for wet season while for the dry season, the trend was: Organic matter > residual > bound to iron and manganese oxides > carbonates bound > exchangeable fractions respectively. The mobility and bioavailability of Al, Cd, Cu, Mn, Ni, Pb and Zn in the soil

samples for wet season followed the order: Al > Cu > Mn > Cd > Ni > Pb > Zn while for dry season, the order was Pb > Ni > Al > Mn > Cu > Cd > Zn. The total metal concentrations of roadside surface soils for wet season ranged from 1.85 µgg⁻¹ Al to 5331.56 µgg⁻¹Mn while for dry season, heavy metal concentrations ranged from 1.05 µgg⁻¹ Al to 4945.55 µgg⁻¹ Mn. Values of enrichment factor for the metals showed that the roadside soils of Ile-Ife was highly enriched with Cd, Mn, Zn and Cu. The values of translocation factor of metals in the plant samples ranged from 0.002 µgg⁻¹ for the wet season to 0.713 µgg⁻¹ for the dry season. The pH of the soil samples collected from roadside ranged from 2.90 at Toll Gate to 5.40 at Olonade site for wet season and dry season values ranged from 3.10 at OAU Sports Complex to 5.10 at Our Lady Junction site. The electrical conductivity (EC) for wet season of roadside surface soils ranged from 52.60 µSm⁻¹ at Our Lady Junction to 65.20 µSm⁻¹ at Toll Gate site, while the EC values for dry season ranged from 31.90 µSm⁻¹ at OAU Sports Complex to 58.80 µSm⁻¹ at Oduduwa College road, of Ile-Ife were less alkaline. The loamy sand and sandy loam textural classes predominated in the soil samples for both seasons and the percentage organic matter of the roadside surface soils of Ile-Ife for both seasons were low ranging from 0.06% to 0.13%.

The study concluded that soils of Ile-Ife were polluted with respect to Cd, Mn, Zn and Cu and unpolluted with regard to Al, Ni and Pb in all the studied metals.

CHAPTER ONE

INTRODUCTION

1.1. Background to the Study

Globally, roads have been identified as a source of social and economic development (Bai *et al.*, 2008). According to Adefolalu (1980) and Mabogunje (1980) in developing countries like Nigeria, improved road accessibility creates variety of socio-economic activities which range from mobile shops, cafés, vehicle repairs, vulcanizers and dealers in other facilitators of motor transportation. These activities send metals into the air in particulate form and the metals subsequently are deposited into nearby soils (Okunola *et al.*, 2008). Among the sources of metals in road environment, traffic emissions from vehicles, lorries, motorcycles have been identified to introduce a number of toxic metals into the environment, which are later deposited on roadsides (Ogunfowokan *et al.*, 2004, 2009; Okunola *et al.*, 2011).

Highway run-off contains numerous potential environmental pollutants that can adversely affect fauna and flora adjacent to roads, the effects of which have been shown to extend a greater distance from increased daily vehicle use (Trombular and Frissel, 2001; Pliejal *et al.*,2004). The dispersal of vehicle emissions and particulates from wear and tear also varies from place to place being influenced by factors such as wind direction, local climate, topography and seasonal salt applications in severe winter weather (Marsaleki *et al.*, 1999). Potential traffic-derived pollutants include poly aromatic hydrocarbons, volatile organic compounds, heavy metals and particulates such as rubber from tyres, nitrogen oxides, ammonia and nitrous acid (Bignal *et al.*, 2007).

1.0

The term heavy metal refers to any metallic chemical element that has a relatively high density and is toxic or poisonous at low concentrations (Skoog*et al.*, 1991). Examples of such heavy metal include Hg, Cd, Ar, Cr, Cu, Pb, Zn, Mn, Fe, etc that may exist as natural component of the earth's crust. They cannot be biodegraded or destroyed and to some extent, may enter our bodies through food, drinking water and air. As trace elements, some heavy metals such as Cu, Fe, Se and Zn are essential to maintain the metabolism of the human body. However, at higher concentration, they lead to poisoning. Heavy metal poisoning could results for instance, from drinking water contaminated (eg lead pipes), high ambient air concentration near the heavy metal emission sources or through intake via the food chain (Alloway, 1990).

It has been established in Nigeria that both human being and animals are unnecessarily overexposed to numerous environmental hazards, often as a result of gross inefficiency and negligence. These poor environmental conditions have resulted in increasingly deteriorating health condition as well as drastic reduction in the developing world (Basta, 2000).

Atmospheric transport and deposition are important processes in the global cycling of heavy metals. The atmospheric flux of heavy metal is a major component in both marine and terrestrial environment. Environmentalpollution deals with the modification of the natural and chemical environment of the earth by human activities and natural activities such as volcanic eruption, bush-fire, decaying process, etc. It has been reported that we may be experiencing a "silent epidemic" of environmental poisoning from the ever increasing amounts of metals waste emitted into the biosphere. The mining, manufacturing and disposal of metals and metal containing materials are inevitable causes of environmental pollution (Chanery *et al.*, 2002).

The trend in trace metal levels have been attributed to automobile emissions which are a major source of heavy metals, as the highest concentrations of lead and zinc were recorded in the

commercial areas of the city known for the high traffic densities (Kakulu, 2004). Other investigators such as (Tong, 2006) recently confirmed that elevated concentrations of copper in heavily travelled highways were noted suggesting that much of the copper pollutant is probably of automotive origin. The lead concentration which vary with housing age and higher level of the contaminations in the older neighbourhoods were probably due to the accumulation of residues from leaded gasoline and lead-based paint in the past and the use of coal fire or space heating in older houses.

Most of these heavy metals are potentially hazardous. For example, the extensive literature on cadmium toxicity that result to chronic bronchitis, hypertension, renal and cardio vascular diseases has been reviewed (Tong and Lam, 2000; Pagatto *et al.*, 2001). Cadmium, zinc, and nickel originate from oils, pneumatics and old car pieces in general and manganese prevalently from natural sources. Accumulation (and distribution) of anthropogenic heavy metals in soil may depend on wet and dry depositions that convey particles from air to soil. Heavy metals are potentially toxic to human life and the environment.

Several studies have shown that metals such as lead, cadmium, nickel, among others, are responsible for certain diseases that have lethal effects on man and animals (Lawther, 1965; Gidding, 1973; Gustav, 1974). Heavy metals may also impair plant physiology by reducing respiration and growth, interfering with photosynthetic processes and inhibiting fundamental enzymatic reactions if accumulated at high concentrations. The ability of plants to accumulate heavy metals into their organs may hence be used to monitor soil pollution, and in particular the amount of heavy metals available to plants.

In the past, several authors investigated the distribution of heavy metals in roadside soil (Chen *et al.*, 2010; Xia *et al.*, 2011); grass (Caggiano *et al.*, 2001) and leaves (D'souza *et al.*, 2010;

Huang *et al.*, 2011) emphasizing lead accumulation in soils and vegetation (Elekes *et al.*, 2010; Yangun *et al.*, 2004, 2005), near highways (Vandenabeele and Wood, 1972), in small mammals (Nakayama *et al.*, 2011), human (Harmanescu *et al.*, 2011) and invertebrates (Williamson and Evan, 1972). Other authors focused their attention on heavy metals accumulation by higher plants in order to study the urban pollution (Sawidis *et al.*, 2011; Gallagher *et al.*, 2008).

Man, animals, vegetation and soil act as "sink" for atmospheric pollutants (Clyde, 1971; Valkovic *et al.*, 1979; Osibanjo and Ajayi, 1980). Biomonitoring studies provide valuable information about the quantity and quality of pollutants in the environment and can be very effective as an early warning system to detect environmental changes (Seaward, 2004). The usefulness of soil and vegetation samples in detecting environmental metals has been reported by many workers. The most economical and reasonable method for monitoring heavy metal levels in the environment is by using vegetation. The high metal accumulative capacity of plants is the reason why plants can be used as biomonitors of heavy metals pollution in soil. Wenzel and Jockwer (1999), Witting (1993) and Markert (1993) worked on the basic criteria for selection of species as a bioindicator. The major criteria are species should be represented in large numbers all over the monitoring area, have a wide geographical range, be possible to differentiate between air-borne and soil-borne heavy metals i.e being able to accumulate heavy metals, be easy to sample and there should be no identification problems.

Determining the chemical form of a metal in vegetation and soil are important to evaluate its mobility and bioavailability. Chemical speciation of heavy metals allows us to determine the availability and mobility of metals in soil and vegetation. It is widely recognized that to assess the environmental impact of soil and vegetation pollution, the determination of metal speciation gives more information about the released heavy metal contaminants and further processes of

migration and toxicity (Rauret *et al.*, 1988; Usero *et al.*, 1998). Thus, to provide reliable information on the forms of association on heavy metals regarding their availability levels and