

COMPARISON OF SOME OPTIMIZATION TECHNIQUES IN

ROBUST PROCESS CONTROL DESIGN

BY

SAMUEL OLADAYO ADEYEMO

B.Sc. (Hons) (Chemical Engineering)

Obafemi Awolowo University, Ile-Ife.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN CHEMICAL ENGINEERING

FACULTY OF TECHNOLOGY OBAFEMI AWOLOWO UNIVERSITY ILE-IFE, NIGERIA

2015

OBAFEMI AWOLOWO UNIVERSITY ILE-IFE, NIGERIA

HEZEKIAH OLUWASANMI LIBRARY

POSTGRADUATE THESIS

AUTHORIZATION TO COPY

AUTHOR: ADEYEMO, SAMUEL OLADAYO

TITLE: COMPARISON OF SOME OPTIMIZATION TECHNIQUES IN ROBUST PROCESS CONTROL DESIGN

DEGREE: M.Sc. (CHEMICAL ENGINEERING)

YEAR: 2015

I, ADEYEMO Samuel Oladayo, hereby authorize Hezekiah Oluwasanmi Library to copy my thesis, in whole or part, in response to request from individual researcher and organization for the purpose of private study or research.

Date:....

Signature:....

CERTIFICATION

We certify that this research programme was supervised by us and approved in accordance with requirements for the award of Master of Science (M.Sc.) Degree in Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.

Prof. O. Taiwo

(Supervisor)

Dr. (Mrs) E. F Aransiola

(Head of Department)

ACKNOWLEDGEMENTS

I am grateful to God Who has brought me this path as a means to further equip me for divine purpose.

I am highly indebted to my supervisor, Prof O. Taiwo for providing me with helpful materials, his availability at all times for consultations and also his objective criticisms. I appreciate Mr. A. Bamimore for his moral support and also for providing me the operating point data for the three-tank system. In like manner, I remain grateful to all lecturers of the department who have also been part of my learning process in the course of this program.

My deep appreciation goes out to my parents, Dn. & Mrs. E. A. Adeyemo for always being there. A big thank you to my siblings and their families: Mr. & Mrs. Bolaji Adeyemo, Mr. & Mrs. Bisi Adeyemo, Mr. & Mrs. Lawrence Aremu, Rev. & Mrs. Ola Adeyemo, Mr. & Mrs. Biodun Adeyemo, Mr. & Mrs. Folakemi-Bode and my precious cousin Praise Stephen. Thank you for all moral, financial and spiritual support.

I can't but appreciate my God-given Heartbeat, Agbaje Roseline Abike and precious brothers Bamikole John and Olanrewaju Adeolu for the unquantifiable love, prayers, encouragements and support. I'm grateful God brought you into my life.

I appreciate the BSFOAU Missions subgroup for the platform to find purpose during the course of the program. A big thanks to all villages and persons I had opportunity to meet and commune with this period. May this encounter be of eternal significance.

Finally, I appreciate the warm fellowship of members and leadership of First Baptist Church Obajana and colleagues who were of great encouragement during my graduate trainee program over there. God bless you all. Also, a big thank you to my spiritual fathers and their families;

Rev. Dr. and Pastor (Mrs) Duro Ayanrinola and Rev. and Pastor (Mrs) Andrew Abah. God bless you real good.

TABLE OF CONTENTS

OUTLINE	PAGE
Authorization to Copy	ii
Certification	iii
Acknowledgements	iv
Table of Contents	vi
List of Figures	xiii
List of Tables	XX
Abstract	xxi
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1
1.2 Statement of Research Problem	3
1.3 Objectives of the Project	3
1.4 Scope of the Project	3
1.5 Justification	4
1.6 Organization of the Thesis	5

CHA	APTER	TWO: LITERATURE REVIEW	7
2.1	Backg	round of Robust Process Control	7
2.2	Conce	pt of Weights	9
	2.2.1	Uncertainty weight	9
	2.2.2	Performance weight	15
2.3	Optim	ization in Robust Process Control Design	24
	2.3.1	Method of inequalities	24
	2.3.2	MATLAB Optimization Toolbox	26
	2.3.3	H∞ synthesis	26
	2.3.4	μ synthesis	27
2.4	Previo	us Works	31
CHA	APTER	THREE: METHODOLOGY	33
3.1	Six-Sp	oherical Tank System	33
	3.1.1	System Description	33
	3.1.2	Aim of control system design	36
	3.1.3	Choice of nominal model	36
	3.1.4	Uncertainty modeling	36

	3.1.5	Controller Design	36
	3.1.6	Controller Optimization	38
3.2	Nonlin	ear Boiler-Turbine Alternator	38
	3.2.1	System Description	38
	3.2.2	Aim of control system	41
	3.2.3	Choice of nominal model	41
	3.2.4	Uncertainty modeling	41
	3.2.5	Controller Design	41
	3.2.6	Controller Optimization	42
3.3	Deprop	panizer Column	42
	3.3.1	System description	42
	3.3.2	Aim of control system design	43
	3.3.3	Uncertainty modeling	43
	3.3.4	Controller Design	43
	3.3.5	Controller Optimization	44
3.4	Recycl	e Systems	44
	3.4.1	System description	44

	3.4.2	Aim of control system design	49
	3.4.3	Uncertainty modeling	49
	3.4.4	Controller Design	49
	3.4.5	Controller Optimization	49
3.5	Quadru	ple-Tank System	50
	3.5.1	System description	50
	3.5.2	Aim of control system design	53
	3.5.3	Choice of nominal model	53
	3.5.4	Uncertainty modeling	53
	3.5.5	Controller Design	54
	3.5.6	Controller Optimization	54
3.6	Three-7	Tank Systems	54
	3.6.1	System description	54
	3.6.2	Aim of control system	57
	3.6.3	Choice of nominal model	57
	3.6.4	Uncertainty modeling	57
	3.6.5	Controller Design	57
	3.6.6	Controller Optimization	58

CHA	HAPTER FOUR: RESULTS AND DISCUSSION		59
4.1	Six-Spl	herical-Tank System	59
	4.1.1	Nominal model	59
	4.1.2	Modeled uncertainty	59
	4.1.3	Model approximation for design of controller	63
	4.1.4	Controller	65
	4.1.5	Controller optimization	65
	4.1.6	Analyses of controllers	68
	4.1.7	Discussion	68
4.2	Nonlin	ear Boiler-Turbine Alternator	82
	4.2.1	System model	82
	4.2.2	Nominal model	83
	4.2.3	Modeled uncertainty	84
	4.2.4	Controller Design	84
	4.2.5	Controller optimization	88
	4.2.6	Analyses of the controllers	88
	4.2.7	Discussion	91

4.3	Deprop	panizer Column	103
	4.3.1	Nominal model	103
	4.3.2	Modeled uncertainty	113
	4.3.3	Controller	113
	4.3.4	Controller optimization	113
	4.3.5	Analyses of the controllers	115
	4.3.6	Discussion	115
4.4	Recycl	e Systems	133
	4.4.1	System models	133
	4.4.2	Modeled uncertainties	133
	4.4.3	Controllers	134
	4.4.4	Controller optimization	134
	4.4.5	Controller order reduction	135
	4.4.6	Analyses of the controllers	140
	4.4.7	Discussion	140
4.5	Quadru	ıple-Tank System	156
	4.5.1	System model	156

	4.5.2	Modeled uncertainties	157
	4.5.3	Controllers	157
	4.5.4	Controller optimization	160
	4.5.5	Analyses of the controllers	160
	4.5.6	Discussion	160
4.6	Three-'	Tank System	169
	4.6.1	System models	169
	4.6.2	Nominal model	170
	4.6.3	Modeled uncertainties	170
	4.6.4	Controllers	174
	4.6.5	Controller optimization	174
	4.6.6	Analyses of the controllers	176
	4.6.7	Discussion	176
4.7	Overvi	ew of the Work	180

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 190

5.1	Conclusions	190

5.2 Recommen	dations	191
REFERENCES		192
NUMENCLAT	URE	197
APPENDICES		0
APPENDIX A	Process Parameters, Operating Points and	198
	Calculated Parameters of Transfer Matrices of	
	Operating Points of Six-tank System	
APPENDIX B	Operating Points of Nonlinear Boiler-Turbine	200
	Alternator	
APPENDIX C	H_∞ Controller for Six-tank Level system	201
APPENDIX D	μ Optimal Controller for Nonlinear Boiler-Turbine	203
APPENDIX E	Synthesized Controllers for Two-tank Level system	206
	and Two-CSTR in Series with Recycle	
APPENDIX F	Nominal Operating Conditions and Parameter Values	210
br	for Four-tank System	
APPENDIX G	Synthesized Controllers for Four-tank System	211
APPENDIX H	Operating Conditions and Parameter Values for	213
	Three-tank System	

APPENDIX I Synthesized Controllers for Three-tank System 214

APPENDIX J Sample MATLAB codes for, MoI, *fminsearch*, 216

fmincon, H_{∞} and μ Controller Optimization

LIST OF FIGURES

Figure	Title	Page
2.1	Weight W Transforming Normalized Input v' into Physical Input	9
2.2	Additive Uncertainty Description	11
2.3	Multiplicative Uncertainty Description	12
2.4	Uncertainty regions of the Nyquist plot at given frequencies	16
2.5	Disc approximation of the original uncertainty region	17
2.6	Disc-shaped uncertainty regions generated by complex additive uncertainty	18
2.7	Inverse of performance weight. Exact and asymptotic plot of $1/ W_p $	20
2.8	Nyquist plots for (a) The opposite case of $GM < 1$ (b) The two-sided case	22
2.9	Configuration for H-infinity Controller Synthesis	28
2.10	(a) General Representation of an Uncertain System, (b) Δ -M Structure for	
	Controller Analysis	29
3.1	Schematic Diagram of Six-Tank System	34
3.2	Open Loop Simulation of Linearized models of Six-Spherical Tank System at	
	different Operating Points	37
3.3	Schematic Diagram of the Boiler-Turbine Alternator	39
3.4	Schematic Diagram for the Two-Tank Network	46

3.5	Schematic Diagram of Two CSTR in Series with Recycle	48
3.6	Schematic of the Quadruple-tank system	51
3.7	Schematic Diagram of the Three-tank System	55
4.1	Nyquist Plot of Element (1,1) for the Different Operating Points	60
4.2	Nyquist Plot of Element (2,2) for the Different Operating Points	61
4.3	Comparison of Weight and Relative Deviations of the Perturbed Plants	62
4.4	Comparison of Original and Approximated Models of OP2	64
4.5	Plot of Singular Values of Nominal Sensitivity Function and 1/Wp for Six-Tank	
	System	67
4.6a	Process Outputs and Interactions for Unit Set-point Change and 0.4 units	
	Disturbance (Nominal Model)	70
4.6b	Servo (r=[1 -1]') and Regulatory (d=0.4.[1 -1]') Responses (Nominal Model)	71
4.7a	Process Outputs and Interactions for Unit Set-point Change and 0.4 units	
	Disturbance (OP1)	72
4.7b	Servo (r=[1 -1]') and Regulatory (d=0.4.[1 -1]') Responses (OP1)	73
4.8a	Process Outputs and Interactions for Unit Set-point Change and 0.4 units	
	Disturbance (OP2)	74

4.8b Servo (r=[1 -1]') and Regulatory (d=0.4.[1 -1]') Responses (OP2) 75

4.9a	Process Outputs and Interactions for Unit Set-point Change and 0.4 units	
	Disturbance (OP3)	76
4.9b	Servo (r=[1 -1]') and Regulatory (d=0.4.[1 -1]') Responses (OP3)	77
4.10a	Process Outputs and Interactions for Unit Set-point Change and 0.4 units	
	Disturbance (OP4)	78
4.10b	Servo (r=[1 -1]') and Regulatory (d=0.4.[1 -1]') Responses (OP4)	79
4.11	Servo (r = $[1 -1]'$) and Regulatory (d = 0.4. $[1 -1]'$) Responses (OP2), Escobar	81
	and Trierweiler	
4.12a	Nyquist Plot of (1,1) Element for the Different Operating Points	85
4.12b	Nyquist Plot of (2,2) Element for the Different Operating Points	85
4.12c	Nyquist Plot of (3,3) Element for the Different Operating Points	86
4.13	Uncertainty Weight and Relative Deviations of OPs 3, 5 and 6 from Nominal	
	OP4	87
4.14	Plot of Singular Values of Sensitivity function and $1/W_p$	80
4.15	Responses to Unit Step Inputs with Initial Controller Parameters	94
4.16	Responses to Unit Step Inputs with <i>fmincon</i> Optimized Controller Parameters	95
4.17	Responses to Unit Step Inputs with fminsearch Optimized Controller	
	Parameters	96

4.18	Outputs and Control Signals of Boiler-Turbine System using Initial Controller	98
4.19	Outputs and Control Signals of Boiler-Turbine System using <i>fmincon</i> Optimized	
		99
4.20	Outputs and Control Signals of Boiler-Turbine System using <i>fminsearch</i>	
	Optimized Controller	100
4.21	Responses to Unit Step Inputs with Modified <i>fmincon</i> Controller	104
4.22	Responses to Unit Step Inputs with Fixed-structure $H\infty$ Controller	105
4.23	Responses to Unit Step Inputs with µ Optimal Controller	106
4.24	Outputs and Control Signals of Boiler-Turbine System using Modified <i>fmincon</i>	
	Controller	107
4.25	Outputs and Control Signals of Boiler-Turbine System using Fixed-structure	
	$H\infty$ Controller	108
4.26	Outputs and Control Signals of Boiler-Turbine System using μ Optimal	
	Controller	109
4.27	Outputs and Control Signals of Boiler-Turbine System using Modified fmincon	
	Controller with Scaled Input	110
4.28	Outputs and Control Signals of Boiler-Turbine System using Fixed-structure	

4.29	Outputs and Control Signals of Boiler-Turbine System using $\boldsymbol{\mu}$ Optimal	
	Controller with Scaled Input	112
4.30	Singular Value Plot of Input Uncertainty Weight for Depropanizer Column	114
4.31	Plot of Singular Values of Nominal Sensitivity Function and 1/Wp for	
	Depropanizer Column	117
4.32	Servo and Regulatory Responses of Depropanizer column with Initial Controller	
	Parameters	119
4.33	Servo and Regulatory Responses of Depropanizer column after Controller	
	Optimization with MoI	120
4.34	Servo and Regulatory Responses of Depropanizer column after Controller	
	Optimization with <i>fmincon</i>	121
		121
4.35	Servo and Regulatory Responses of Depropanizer column after Controller and	
	Performance Weight Optimization with MoI	122
		122
4.36	Servo and Regulatory Responses of Depropanizer column after Controller and	
	Performance Weight Optimization with <i>fmincon</i>	123
		123
4.37	Servo and Regulatory Responses of Depropanizer Column with Initial	
	Controller Parameters	128
		140

4.38	Servo and Regulatory Responses of Depropanizer Column after Controller	
	Optimization with MoI	129
4 20	Some and Regulatory Responses of Deprenanizer Column ofter Controller	
4.39	Optimization with function	
	Optimization with <i>jmincon</i>	130
4.40	Servo and Regulatory Responses of Depropanizer Column after Controller and	
	Performance Weight Optimization with MoI	131
		151
4.41	Servo and Regulatory Responses of Depropanizer Column after Controller and	
	Performance Weight Optimization with <i>fmincon</i>	132
4 4 2	Plot of Singular Values of Nominal Sensitivity Function and 1/Wn for Two-tank	
7.72	Level System	
		138
4.43	Plot of Singular Values of Nominal Sensitivity Function and 1/Wp for Two	
	CSTR in Series with Recycle	139
		157
4.44	Servo and Regulatory Responses for Two-Tank System with Initial Controller	
	Parameters	143
4.45	Servo and Regulatory Responses for Two-Tank System after Controller	
	Optimization with MoI	
		144
4.46	Servo and Regulatory Responses for Two-Tank System after Controller	
	Optimization with <i>fmincon</i>	145
		1.0

4.47	Servo and Regulatory Responses for Two-Tank System with fixed-structure $H\infty$	
	Controller	146
4.48	Servo and Regulatory Responses for Two-Tank System with $H\infty$ Controller	147
4.49	Servo and Regulatory Responses for Two-Tank System with μ Controller	148
4.50	Servo and Regulatory Responses for Two CSTR in Series with Initial Controller	
	Parameters	149
4.51	Servo and Regulatory Responses for Two CSTR in Series after Controller	
	Optimization with MoI	150
4.52	Servo and Regulatory Responses for Two CSTR in Series after Controller	151
	Optimization with <i>fmincon</i>	
4.53	Servo and Regulatory Responses for Two CSTR in Series with Fixed-structure	
	$H\infty$ Controller	152
4.54	Servo and Regulatory Responses for Two CSTR in Series with $H\infty$ Controller	153
4.55	Servo and Regulatory Responses for Two CSTR in Series with μ Controller	154
4.56	Plot of Magnitude of Parametric Uncertainty in Four-tank System	158
4.57	Plot of Magnitude of Uncertainty Weight for Four-tank System	159
4.58	Servo and Regulatory Responses for Four-Tank System with Initial Controller	
	Parameters	163

4.59	Servo and Regulatory Responses for Four-Tank System after Controller	
	Optimization with MoI	164
4.60	Servo and Regulatory Responses for Four-Tank System after Controller	
	Optimization with <i>fmincon</i>	165
4.61	Servo and Regulatory Responses for Four-Tank System with fixed-structure $H\infty$	
	Controller	166
4.62	Servo and Regulatory Responses for Four-Tank System with $H\infty$ Controller	167
4.63	Servo and Regulatory Responses for Four-Tank System with μ Controller	168
4.64	Nyquist Plots of Diagonal elements of Transfer Functions of Different	171
4.65	Plot of Relative Deviations of Perturbed Plants from Nominal OP2	172
4.66	Magnitude Plots of Diagonal Elements of Different Operating Points	173
4.67	Magnitude Plot of Uncertainty weight for Three-tank System	175
4.68	Plot of Sensitivity Function of Three-tank System and $1/W_p$	179
4.69	Servo and Regulatory Responses for Three-Tank System with Initial Controller	
	Parameters	181
4.70	Servo and Regulatory Responses for Three-Tank System after Controller	
	Optimization with MoI	182

4.71	Servo and Regulatory Responses for Three-Tank System after Controller	
	Optimization with <i>fmincon</i>	183
4.72	Servo and Regulatory Responses for Three-Tank System with fixed-structure	
	$H\infty$ Controller	184
4.73	Servo and Regulatory Responses for Three-Tank System with $H\infty$ Controller	185
4.74	Servo and Regulatory Responses for Three-Tank System with μ Controller	186
4.75	Servo and Regulatory Responses for Three-Tank System with Different	187
	Controllers	

LIST OF TABLES

Table	Title	Page
4.1	Controller Parameters for Six-Tank System	66
4.2	Performance and Robustness Indices for Six-Tank System	69
4.3	Controller Parameters for Nonlinear Boiler-Turbine System	89
4.4	Performance Indices for Nonlinear Boiler-Turbine System	92
4.5	Performance Indices of New controllers for Nonlinear Boiler-Turbine System	
		102
4.6	Controller Parameters for Depropanizer column	116
4.7	Performance Indices for Controllers for Depropanizer Column	118
4.8	Controller Parameters for Depropanizer Column with Unoptimized Starting	
	point	126
4.9	Performance Indices for Controllers for Depropanizer Column	127
4.10	Controller Parameters for Two-tank level system with recycle	136
4.11	Controller Parameters for Two CSTR in series with recycle	137
4.12	Performance and Robustness Indices for Two-tank level system with recycle	141
4.13	Performance and Robustness Indices for Two CSTR in series with recycle	142
4.14	Controller Parameters for Four-Tank System	161

4.15	Performance and Robustness Indices for Four-Tank System	162
4.16	Controller Parameters for Three-Tank System	177
4.17	Performance and Robustness Indices for Three-Tank System	178

OBHILM AMOLOW

ABSTRACT

The research explored standard ways of quantifying uncertainties in systems and assessing controller performance in the frequency domain; examined four robust process control design strategies implementing them on typical multivariable systems. This was with the view of delineating their advantages and disadvantages.

The mathematical models of selected multivariable systems were obtained from the literature. Different sources of uncertainties were identified for each system. Nominal models were arrived at by considering the average plant using the Nyquist plots of different operating points in some instances, while the model of the nominal operating point in some other instances were chosen. In the previous case, the frequency plots of deviations of the different operating points from the nominal model were used to model the uncertainty weights whereas in the latter instance, specific ranges of perturbations were modelled to be attributed to the systems at low and high frequencies. The optimization techniques considered are Method of Inequalities (MoI), MATLAB Optimization Toolbox commands *fmincon* and *fminsearch*, and H_{∞} and μ synthesis strategies. Decentralized controllers were designed using IMC tuning relations (or SIMULINK auto-tuning facility) and fixed-structure H_{∞} design strategy. The former was optimized using MoI, *fmincon* and *fminsearch* at different instances. Optimal centralized controllers were also designed using H_{∞} and μ synthesis strategies. The performance of each controller was assessed by calculating the Structured Singular Value for robust stability and performance, the IAE values during unit step changes and observing other transient response characteristics such as rise-time, settling time, overshoot, interaction and disturbance rejection.

The results show that the efficiency of MoI decreases with increasing number of parameters to be optimized unlike *fmincon* which works better with more parameters and may rather appear "aggressive" on simple systems with few parameters to be optimized; such systems attain good rise-time but may not eventually settle fast as desired. Meanwhile, both strategies require starting parameters for optimization. Centralized H_{∞} and μ syntheses were reliable strategies for obtaining robust controllers even for complex systems (systems of large dimensions, high order, great interactions and/or time-delayed terms) but in most cases resulted in controllers of high order. Controller order reduction was undertaken whenever closed loop performance degradation was not significant. Fixed-structure H_{∞} controllers were found to be good alternatives but as expected, their performance did not exactly match those of the full controllers. In general, controllers synthesized with H_{∞} and μ strategies under a given bandwidth (ω_B^*) constraint were found to have slower responses compared to those optimized with MoI and *fmincon* with the same constraint.

The study concluded that optimal ω_B^* values are best obtained for simple systems by optimizing alongside with controller parameters using MoI while for complex systems, much improvement may not be achievable upon the value obtained from the sensitivity plot of initial controller. It is also concluded that H_{∞} and μ syntheses should be reserved for complex systems for which multiloop MoI optimization, *fmincon* optimization and fixed-structure H_{∞} synthesis fail to attain desired performance.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Mathematical modeling plays a crucial role in engineering. It is more or less a sole tool for representing real existing systems, specifying desired properties and manipulating existing parameters to obtain a predetermined performance, or at least something close enough to it. It is however unfortunate that ideal models that perfectly represent real systems are often difficult to arrive at and managed during computations. Skogestad and Postlewaite (2001) identified the following as possible origins of deviation of a model from the plant it represents;

- a. There are always parameters in the linear model which are only known approximately or are simply in error.
- b. The parameters in the linear model may vary due to nonlinearities or changes in the operating conditions.
- c. Measurement devices have imperfections. This may even give rise to uncertainty on the manipulated inputs, since the actual input is often measured and adjusted in a cascade manner. For example, this is often the case with valves where a flow controller is often used. In other cases limited valve resolution may cause input uncertainty.
- d. At high frequencies even the structure and the model order is unknown, and the uncertainty will always exceed 100% at some frequency.
- e. Even when a very detailed model is available we may choose to work with a simpler (loworder) nominal model and represent the neglected dynamics as "uncertainty".

f. Finally, the controller implemented may differ from the one obtained by solving the synthesis problem. In this case one may include uncertainty to allow for controller order reduction and implementation inaccuracies.

The above sources of uncertainty were further grouped into two main classes; (1) Parametric uncertainty and (2) Neglected and unmodelled dynamics uncertainty.

Besides the deviations of a mathematical model from the physical system it represents, real systems are also subject to external disturbances which can upset the system if not well managed. According to Gu *et al.* (2005), a control system is *robust* if it remains stable and achieves certain performance criteria in the presence of possible uncertainties.

To assess the robustness of a particular system, it is necessary that the uncertainties are correctly quantified and applied to the nominal system as perturbations. In the frequency domain, these are expressed in terms of weights which specify some additional frequency characteristics that should be expected besides those exhibited in the available plant model. Also, the desired performance of the perturbed system in question may be expressed as another weight for easy frequency domain analyses of the control system.

Often, the control engineer must reach a compromise between desired performance and the range of uncertainty a system can accommodate. This conclusion many times is not easily arrived at without carrying out some iterations which may be quite mathematical and tedious. Several algorithms have been proposed over the years for carrying out such optimization processes and many of these can be implemented using MATLAB, a software readily available to the average control engineer.

1.2 Statement of Research Problem

Variations between real systems and mathematical models are quantified as uncertainty weights. Attainable performances are limited by range of uncertainty in systems. Optimization techniques in process control have strengths and limitations in the ease of obtaining controllers meeting optimal performance requirement in the face of uncertainties. Hence this study.

1.3 Objectives of the Project

The specific objectives of the research are to

- 1. explore standard ways of quantifying uncertainties in systems and assessing controller performance in the frequency domain;
- 2. examine specific robust process control strategies;
- 3. implement the above strategies on typical multivariable systems; and
- 4. determine the strengths and limitations of each strategy.

1.4 Scope of the Project

In this work, MATLAB was used to analyze the frequency behaviour of uncertain multivariable systems and the uncertainty regions were expressed as weights added to the

OBATEMIANOLOWING