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                                                              ABSTRACT 

The research explored standard ways of quantifying uncertainties in systems and assessing 

controller performance in the frequency domain; examined four robust process control design 

strategies implementing them on typical multivariable systems. This was with the view of 

delineating their advantages and disadvantages. 

The mathematical models of selected multivariable systems were obtained from the literature. 

Different sources of uncertainties were identified for each system. Nominal models were arrived 

at by considering the average plant using the Nyquist plots of different operating points in some 

instances, while the model of the nominal operating point in some other instances were chosen. In 

the previous case, the frequency plots of deviations of the different operating points from the 

nominal model were used to model the uncertainty weights whereas in the latter instance, specific 

ranges of perturbations were modelled to be attributed to the systems at low and high frequencies. 

The optimization techniques considered are Method of Inequalities (MoI), MATLAB 

Optimization Toolbox commands fmincon and fminsearch, and H∞ and µ synthesis strategies. 

Decentralized controllers were designed using IMC tuning relations (or SIMULINK auto-tuning 

facility) and fixed-structure H∞ design strategy. The former was optimized using MoI, fmincon 

and fminsearch at different instances. Optimal centralized controllers were also designed using H∞ 

and µ synthesis strategies. The performance of each controller was assessed by calculating the 

Structured Singular Value for robust stability and performance, the IAE values during unit step 

changes and observing other transient response characteristics such as rise-time, settling time, 

overshoot, interaction and disturbance rejection. 
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The results show that the efficiency of MoI decreases with increasing number of parameters to be 

optimized unlike fmincon which works better with more parameters and may rather appear 

“aggressive” on simple systems with few parameters to be optimized; such systems attain good 

rise-time but may not eventually settle fast as desired. Meanwhile, both strategies require starting 

parameters for optimization. Centralized H∞ and µ syntheses were reliable strategies for obtaining 

robust controllers even for complex systems (systems of large dimensions, high order, great 

interactions and/or time-delayed terms) but in most cases resulted in controllers of high order. 

Controller order reduction was undertaken whenever closed loop performance degradation was 

not significant. Fixed-structure H∞ controllers were found to be good alternatives but as expected, 

their performance did not exactly match those of the full controllers. In general, controllers 

synthesized with H∞ and µ strategies under a given bandwidth (𝜔𝐵
∗ ) constraint were found to have 

slower responses compared to those optimized with MoI and fmincon with the same constraint. 

The study concluded that optimal 𝜔𝐵
∗  values are best obtained for simple systems by optimizing 

alongside with controller parameters using MoI while for complex systems, much improvement 

may not be achievable upon the value obtained from the sensitivity plot of initial controller. It is 

also concluded that H∞ and µ syntheses should be reserved for complex systems for which 

multiloop MoI optimization, fmincon optimization and fixed-structure H∞ synthesis fail to attain 

desired performance. 
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                                                              CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

 

 

Mathematical modeling plays a crucial role in engineering. It is more or less a sole tool for 

representing real existing systems, specifying desired properties and manipulating existing 

parameters to obtain a predetermined performance, or at least something close enough to it. It is 

however unfortunate that ideal models that perfectly represent real systems are often difficult to 

arrive at and managed during computations. Skogestad and Postlewaite (2001) identified the 

following as possible origins of deviation of a model from the plant it represents; 

a. There are always parameters in the linear model which are only known approximately or 

are simply in error. 

b. The parameters in the linear model may vary due to nonlinearities or changes in the 

operating conditions. 

c. Measurement devices have imperfections. This may even give rise to uncertainty on the 

manipulated inputs, since the actual input is often measured and adjusted in a cascade 

manner. For example, this is often the case with valves where a flow controller is often 

used. In other cases limited valve resolution may cause input uncertainty. 

d. At high frequencies even the structure and the model order is unknown, and the uncertainty 

will always exceed 100% at some frequency. 

e. Even when a very detailed model is available we may choose to work with a simpler (low-

order) nominal model and represent the neglected dynamics as “uncertainty”. 
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f. Finally, the controller implemented may differ from the one obtained by solving the 

synthesis problem. In this case one may include uncertainty to allow for controller order 

reduction and implementation inaccuracies. 

The above sources of uncertainty were further grouped into two main classes; (1) Parametric 

uncertainty and (2) Neglected and unmodelled dynamics uncertainty. 

 Besides the deviations of a mathematical model from the physical system it represents, real 

systems are also subject to external disturbances which can upset the system if not well managed. 

According to Gu et al. (2005), a control system is robust if it remains stable and achieves certain 

performance criteria in the presence of possible uncertainties. 

 To assess the robustness of a particular system, it is necessary that the uncertainties are 

correctly quantified and applied to the nominal system as perturbations. In the frequency domain, 

these are expressed in terms of weights which specify some additional frequency characteristics 

that should be expected besides those exhibited in the available plant model. Also, the desired 

performance of the perturbed system in question may be expressed as another weight for easy 

frequency domain analyses of the control system. 

 Often, the control engineer must reach a compromise between desired performance and 

the range of uncertainty a system can accommodate. This conclusion many times is not easily 

arrived at without carrying out some iterations which may be quite mathematical and tedious. 

Several algorithms have been proposed over the years for carrying out such optimization processes 

and many of these can be implemented using MATLAB, a software readily available to the 

average control engineer. 
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1.2  Statement of Research Problem 

Variations between real systems and mathematical models are quantified as uncertainty 

weights. Attainable performances are limited by range of uncertainty in systems. Optimization 

techniques in process control have strengths and limitations in the ease of obtaining controllers 

meeting optimal performance requirement in the face of uncertainties. Hence this study. 

 

1.3  Objectives of the Project 

The specific objectives of the research are to 

1. explore standard ways of quantifying uncertainties in systems and assessing controller 

performance in the frequency domain; 

2. examine specific robust process control strategies; 

3. implement the above strategies on typical multivariable systems; and 

4. determine the strengths and limitations of each strategy. 

 

1.4  Scope of the Project 

In this work, MATLAB was used to analyze the frequency behaviour of uncertain multivariable 

systems and the uncertainty regions were expressed as weights added to the 
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