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ABSTRACT 

This research work places a new and consistent inner product (.;),on a countable family of the 
real LP function spaces, proves generalizations of some of the inequalities of the classical inner 
product for (.;), provides a construction of a specie of Higher Orthogonal Polynomials in these 
inner-product-admissible function spaces, and ultimately brings us to a study of the Generalized 
Fourier Series Expansion in terms of these polynomials. First, the reputation of this new inner 
product is established by the proofs of various inequalities and identities, all of which are found to 
be generalizations of the classical inequalities of functional analysis. Thereafter two 
orthogonalities of (.;), (which coincide at p = 2) are defined while the Gram-Schmidt 
orthonormalization procedure is considered and lifted to accommodate this product, out of which 
emerges a set of higher orthogonal polynomials in LP[-I,?] that reduce to the Legendre 
Polynomials at p = 2. We argue that this inner product provides a formidable tool for the 
investigation of Harmonic Analysis on the real LP function spaces for p other than p = 2, and a 
revisit of the various fields where the theory of inner product spaces is indispensable is 
recommended for further studies. 

I. INTRODUCTION 

In a normed linear space we can 
add vectors and multiply them by scalars as 
in elementary vector algebra. Furthermore 

the norm, 11 1 1  1 1 ,  on such space 

generalizes the elementary concept of the 
length of a vector. However what is missing 
in a general normed space which could be 
introduced is an analogue of the familiar dot 
product, i.e. n.b=a,P,+a,~,+a,p,for 

n=(a,), b=(P,) ,  i = 1,2,3, and the - 

resulting formulae, notably = f i  and 

the condition for orthogonality, g.b_ = 0 ,  
which are important tools in many 
applications. Hence the possibility of 
generalizing the dot product and 
orthogonality to arbitrary vector spaces 
should be of interest. In actual fact this 
consideration was done and led to the 

discovery of the so-called Hilbcrt space [ I ] ,  
named for David Hilbert (1862-1943) whose 
1912 paper on integral equations 
inaugurated this vast theory of abstract 
space 12, 31. 

In the axiomatic definition of a 
Hilbert space given much later by J, von 
Neumann (1927) [4] and refined by 
mathematicians like H. Lowig (1934) [ 5 ] ,  F. 
Rellich (1934) [6] and F. Riesz (1934) [7] an 
arbitrary vector space X was considered 
and on it a mapping (.;), defined on X x 
X into the scalar'field K of X with the 
properties that for all f,g,h t X and cc 
E X ,  

(0 ( f  + g , h )  = ( f  , h )+(g :h )  

(iv) ( f ,  f ) > O  and ( f ,  f )=O if 

and only if f  = o 
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This mapping, called an inner product, was inner product, (.,.). To this end we define 
then used to define a norm, 11 //.I1 1 1 ,  on X the new inner product as 

as 11 f  11 = \i(f.f) and a metric as 

d ( f , g )  = J(f - g ,  f  - g )  . Thus was laid 

the foundation of a space, which was to 
generalize the Euclidean space, unite 
various other spaces and was to prove 
valuable in practical pursuits in the theory of 
Quantum Mechanics, Integral Equations, 
Approximation Theory, etc. 

However, it cam about that when 
the inner product ?-space was introduced in 
1912 it was found that the equivalent inner 
product for the Lebesgue integrable 
functions only generated the L2-norm, 

11 / / . I  1 1 2 ,  thus making only L2 an inner 

product space out of all the LP function 
spaces. These are provable facts in 
functional analysis that are not contested. In 
what follows, we revisit the present definition 
of an inner product, then modify it and seek 
the necessary and sufficient conditions for 
the LP function spaces and for all p E 2IN.  

and test the above axioms for the admissible 
values of p , which will be found later. This 
is shown below by using the definition of 

(. , .)p and the properties of (.;). 
(1) 

( f  + ~ , h ) ~  = ( f  + g>hP-')  

= " . ( f 7 g p - 1 ) + a . ( f 7 g ) P  

(iii) ( f ,  f ) ,  = ( f ,  f " )  2 0 ,  and 

( f , f ) P  = ( f , f P - I )  = o  
To start with let us assume the if and only if, f  = 0 ,  

existence of an inner product on some, if not 
all, of the real LP function spaces and let us ( 1  ( f , g ) ,  = ( f 7 g P - I )  = ( g Y - ' J )  
denote it by (.;),. From undergraduate 
knowledge of the classical definition of an = ( g ,  f )  ... 7 ' ' Y  
inner the following axioms must be 
satisfied by (.,.), if this inner product is to where p* in (iv) means that the introduced 

justify its existence: power (p-I) now goes to the first entry in the 
inner product. 

f ,g ,h  E LP ,a E Rand some 
It follows immediately that ( . , . )P ,  as 

p E (1 ,  00 ) ,  (if not all), we must have 
defined above in terms of the classical inner 

0) (. f  + g , q P  = ( f  ,h),  + ( g , q P  product (.,.), is indeed an inner product on 

(ii) ( a f 7  g ) ,  = a . ( f  , g ) p  LP which makes allowance for the inclusion 
of p and for its variation. This new structure, 

(iii) ( f ,  f ) Y > O  and (f, f) = O i f ,  
P which is called an Lp inner product, will 

and only if, f  = 0  obviously induce more than just the L'- 

(i.1 ( f  , g ) ,  = ( g 7 f ) P .  norm, II.II,, and generalize the outlook on 

where the meaning of p* is explained L' . The consideration of the values of p for 

when the structure of the inner product is which (., .) induces a consistent LP -norm 
\ '  I ,  

exhibited below. In order to theiefore test 
the truth of the above inner-product axioms is postponed to a later section after we have 

it would be necessary that one writes out the established some of its basic properties, 
which will also help in the proof of the 

structure of (.;) in terms of the classical 
P 

axioms of a norm. 
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However, in order to give a precise definition 

of an inner product Lvunction space, the = (9 P - l ~ k  (ag)'-*-' + ( p h ) k ,  f )  
author wishes to anticipate section VI (infra) k=o 

of the paper by stating that (-,-) induces a 
P (using the binomial expansion) 

consistent Lp -norm only for all p E 2 IN. 

This brings us to the following definition. P-' 
= c Y - I C , ~  P-k-1 pk (gp-k-lhk,  f )  

DEFINITIONS k=O II. 

P-1 
An inner product LP function space = C P-Ic*~  P-*-lp* . ( f ,  g~-*-lh*) 

k=n is a pair ( L P , ( - , . ) ~ )  where LP is a real 
0 

linear function space and (*;) satisfies the 
P It should be noted that only two terms of the 

following axioms for f ,  g ,  h  E LP, a E R  and last relation survive when p=2. This gives 

all p E 2 IN; 
( f , a s + P h ) ,  = a . ( f , g ) : + P ( f , h ) ,  

(i) ( f  +g,h) ,  = ( f , h )  P +(g&JP in consonance with the property of the inner 

(ii) ( a f  , g ) ,  = a . ( f ,  g ) P  product on the real L: space. 

Defining the LP -norm as 
(iii) ( f  > g ) p  = ( g , f ) p .  

I/fll,=(f,fy;',for f e L P .  we can 
(iv) ( f ,  f ) P  2 0  and ( f ,  f )  = O  if, and 

P establish relations for If  + 1 1 :  and 
onlv if, f=O. , . 

The following gives some of the - g l ( : ,  their sum and difference which 
properties of (.;) all of which generalize 

P could include and generalize the well known 
those of (.;), = (.,.). parallelogram and polarization identities for 

p=2. The following identities address these: 

Ill. IDENTITIES 
If f , g ~  L\ then 

Let f  ,g ,  h  E LP and a , p  E R, then P-1 

(i) I l f  +gl(: = C '-IC* ( f  + g, f ' -*- 'gk) 
ci+f + ~ g , ~ ) ~  = a . ( f , h )  P +p . (g ,h )P  k=O 

(ii) 
(ii) ( f  ,a,!), =ap-'  ( f  , g ) P  P-1 

(iii) If  - g l l :  = x P - ' C k . ( - l ) * . ( f  - g ,  fp-'-Ig*) 
"-1 k=O 

Proof: 

Recall that 1 1  f  11' = ( f ,  f )  . Thus 
P P C, .a~-*-l  .pk . ( f , g ~ - * - ' h k ) ,  

Proof: (i) is a direct consequence of axioms I I f  +gll: = ( f  + g 7 f  + g ) ,  

(2)(i) and (2)(ii) while (ii) follows from axioms 
(2)(ii) and (2)(iii). (iii) is proved as follows: = ( f , f  + g ) ,  + ( g ; f  + g ) P  
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P-1 

= 5 P-'c ( f ,  f  p - y )  + PIC* ( g ,  f  p-k-lg*) 

k=O k=O 

by appropriate uses of the result (iii) in 
section Ill. Thus, 

k=O 

The same procedure obtains for /If - g lP  
P 

Remarks: By adding and subtracting the 
two results above, on obtains two identities 
that include and generalize the 
parallelogram and polarization identities (for 
p=2) respectively. The following 
computations are given for a better 
understanding of the results of section Ill. 

IV. COMPUTATIONS 

= 2 k=O lck ( ( f  , f l - l g k )  + ( g ,  f l-*gk)) 

In the same way 

Adding and subtracting, one has the 
parallelogram and polarization identities 
respectively. 

In the same way 

These give 

I f  + 911: +llf = 211f 11: + ' 2 ( f  ' 7g2)+ 211911: 

and 

c. P = 6  

Here we obviously have 
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1 l . f  + gll: + l l f  - gll: = 2llf 11: + 3 0 ( ( f  4 7  g 2 )  + ( f  ' 7  g 4 ) )  + 21lgll: 7 

and 

Remarks: Before going to the consideration V. PROPERTIES 

of the LP -norm induced by this inner 
product it is to be noted that for all p E 2  IN, For every f ,  g  E LP,  the following 

there exists a function, C p  ( f  , g ) ,  of holds: 
P-2 

members of LP , such that ('1 c , ( f 7 g ) = 2 '  P c k ( f p - k , g k )  
ke2I IV  

Ilf +glI:: +Ilf -4:: = 2Ilf 11:: +CP (f 7g)+Ilgll::. (ii) C p ( f 7 g ) > 0  and C 2 ( f , g ) = 0  

The following gives the structure of (iii) C p  ( - f  2) = C p  ( f  , g )  

C p  ( f ,  g )  and some of its properties. (i.1 cP ( f ,  g )  = C,  ( g 7  f )  

and in particular 

Proof: 

(i) Note that 

CP ( f  7 g )  = llf + gll: + llf - gll: - 211f 1 1 :  - 211gll: 

Thus 

P-1 P -1 

= x '"c, ( f ,  f  ~ - ~ - ' g * )  + x P-lc, (g7  f p-*- Ig*)  + 
k=O k =O 
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P-1 P-2 

= C "-'ck . (f; f p-'-lgk) + P - l C k  (g, f ~ - ~ - l g ~ )  

k=l k=O 

P-1 P-2 +C p - l c ,  .(-I)* (f, f p-*- 'gk) - C P - l c k  . (-I)* (g, f ~ - ~ - l g * )  

k=l k=O 

P-1 P-1 

= C p - ' c ,  . (f, f p-k-lg*) + C p-lc,-, . (g, f p-kg*-l) 

k=O k=l 

++g . (-l)k (f, f p-*-Ig*) -9 P-IC*-~ .(-I)*-] (g, f p - * g k - I )  

k=O k=l 

(By index shifts in the second and fourth sums.) 

(since(.f ", f P ~ ' )  = (f and (-1)"' = -(-I)*.) 

k 
, since PCk f p  Ck (-1) E 0 for odd values 

k 
of k and Yk +' Ck (-I) = 2 . V k  for cp ( f , g )=2 .  P ~ k ( f P - k , g k )  

ke21 IV 

k E 21N. (ii), (iii), (iv), (v) follow from either 

c p  (f g) = llf + gll: + llf - gll: - 2 If 11: - 211gll: 
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We prove (vi) next. (vi) Observe that from the second definition, 
"-2 

Equating these two expressions for consideration of only p E 21N in the 
CP ( f , a  f )  gives (vi) for a E R. construction of the inner production 

P-2 LP function spaces. 
If a = l ,  wehave P ~ k  =2P-1 -2 .  0 Another question that could be 

ke21 /V raised is whether the norm generated from 

VI. ON THE AXIOMS OF A NORM (-, . )P  is indeed the LP -norm of functional 

analysis. An affirmative answer could be 
It would be appropriate at this point deduced from the following computations: 

to justify the consideration of only values of 

p in 2lN and to show the 1 1  f  I I P  = ( f ,  f  )lip ( f , f ) p  = ( f , f  P-I) 

is indeed a norm in the sense that (i) 

l1. f  > 0 and 1 f 1 1 ,  = 0 if, and only if, 

f = 0 

("1 Ilaf l l ,  = lal I f  l l ,  
(iii) I f  + gll, I f  1 1 ,  + Ilgll, . for f 3 g t R 
and all p t 2IN. The justification of 

p E 21N and the proofs of the three axioms 

for 11 f  1 1 ,  = ( f ,  f  ) y p  ~OI IOW next. 

Axioms (i) is a direct consequence of the 

definition of I f  I I P  and (2)(iv), while axiom (ii) 

is established as follows: 

= l a P  . ( f ,  f ) P ;  for p t 2IN 

= IalP . llf 1 1 ;  
and the result follows. The second to the 
last step above would had been impossible 
if p were not strictly taken from 2 1 / V ,  and 

this nullifies the possibility of making LP an 
inner product space for either p t IN or 

I < p < cc since in this case a P  + lalP. 
This serves as the justification for the 

= I,.,, f . f '-ldP = ~[.,b, f PdP 

(an integral representation of (.;) on L" 

= I[o,bl IfIP d p  (since p E 2IN)  

Remarks: The most important of these three 
axioms are (ii) and (iii). In the proof axiom 
(ii) the necessary and sufficient values of 

p f o r  which the new inner product (.;) 
P 

induces a consistent LP -norm is derived 
and found to be all p t 2IN ,  in which we 
saw that the first member of this countable 

family of inner product LP spaces is actually 

the well behaved L~ space. 
An investigation on how to establish 

axiom (iii),i.e., 

with the use of (.,.)Ptakes us to a 

consideration of the expression derived for 
P 1 f  + in section Ill (supra). Since 

this expression contains terms in terms of 
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inner product, it would be appropriate to look holds for all f , g  E LP7k E IN, p E 21N. 
for their common bound in the fashion of the 
Cauchy-Bunyakovskii-Schwarz Inequality, 

Proof: l ( f ,  g ) l ~  /if 11, ligl12. that gives a bound for 
Observe that by the Cauchy-Bunyakovskii- 

(f 7g)  used in the proof of Schwarz Inequality we have 

Ilf + g1I2 ' (If 11, + g1(2. The inequality 
expressing this common bound in the ( f )  f 1 1  g 2  It ft-len follows that 

expression in 11 f + gIIP,2,~~~ld be 

expected to bore down to (f  P-k,g)l' / I f  Yk 11, '1gkI12 

I (  f ;  g)l < 11 f 112 igl12 at p = 2. This auxiliary 
(I) The only thing that need to be shown is 

inequality and it remarkable proof is detailed the fact that 
below. 

VII. INEQUALITY I l f  p-k 11, .llgk 11, = I l f  Ill-* . llgll", 

and is as follows: 

Remarks: Setting p = 2, k = 1 gives the 
Cauchy-Bunyakovskii-Schwarz Inequality as 
expected. 

Since k E IN, we can set p = 2k E 2IN, However, the auxiliary inequality 
thus making the above subscripts, above is not only of interest as an extension 
2(p - k) and 2k, to coincide and be equal of the Cauchy-Bunyakovskii-Schwarz 
top. Hence Inequality, but also a very important tool in 

later proofs, most especially in the inner 

= l l f  ll:-k . llgll:. 
Whence 

product proof of llf + gllPEzIN + llgllp,21,,, (as 

given below) and in the properties of (.;) : 
P 

for all the inner product LP function spaces. 

Proof: 
0 From section Ill, we have 
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(by an index shift in the second sum) concept to (.;) . This extension thus result 
P 

to two kinds of orthogonalities. 
= + Z('-lck +'-I 'k-l)(f P-k,gk)+(Ig: 11 Definitions: 

k = l  

(i) Let f ,  g E LP . We say f is orthogonal 

= Ilf 11: +f Pck (f P-k, gk)+ilgll: with respect to g if (f ,gjP = 0. Since this 
k=l  

does not necessarily imply (g, f )" = 0 .  we 

have a second kind of orthogonality in LP : 
(ii) If both ( f , g ) P = O a n d  

(g, f ) P  =Ohold, we say f and g are 

' l l f  11: 2 "k I l I f  llrk ' llgll: +lkll: completely orthogonal. The following 
k=l  example might be of importance. 

Example: 
= 2 "k l l f  llz-k 'llgll~ = ( I I ~  I I P  ' I I ~ I I ~ ) '  

k=D 
Let e, (t) = 2-'IP and el (t) = n 

Completeness of L'"'~ as inner product 
spaces follows form it norm-metric. The 
author now goes straight to the business of 
generating orthogonal polynomials in 

LP ([-1,1]), say. 

VIII. ORTHOGONALITIES 

The existence of an inner product 
on a particular function or sequence space 
naturally leads to a consideration of the 
concept of orthogonality of members of the 
space or that of it subspaces. The central 
concept of orthogonality, which is peculiar to 
only inner product spaces, is a 
generalization of the condition of the 
condition of perpendicularity of vectors in 
elementary vector algebra. To start with let 
us consider the classical case: we say two 
non-zero members, x, y of an inner product 
admissible space are orthogonal iff 

( x , ~ )  = 0 [2 ]  One may want to extend this 

Then but 

LP ([-l,l),p E 2IV. 
Observe that the two kinds of orthogonalities 
coincide at p=2, for obvious reasons. 
Before entering into the subject of Gram- 
Schmidt Orthonormalisation Procedure, let 
us establish some useful properties of 
orthogonality and linear inde~endence in 

a. Properties 

(a) Let f ,  e 0 and ( fk , f ; )  = 0, k # i then 
P 

{ fk);=, is a linearly independent set. 

(b) (fx), = ( f , h ) P ,  then 

g = h ;  f , g , h € L P .  
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(c) Given that ( fn,g)p = 0 and (b) If (f ,g)p = (f ,then 

f .  + f ,  then (f, g)p = 0. 

(d) Continuity of (-;) : If fn -+ f and 
(f ,gp-I) = (f ,hY-I) 

P 

(e) An orthonormal set is a linearly 
independent set. (c) Consider 

Proofs: 
n 

(a) Consider akf, = 0, 
k=l 

I(f..g), -(fdpl = / ( f n  -f ,dYl 

= l(fn -f,gp-')1 

since 11 fn - f l i p  + 0, as n -+a. 

(d) Suppose that 

l I f n  - fll+ 03 l(gn - glIp + 07 as n -+ rc 

The latter convergence also implies 

/ I~ ,P- '  - gp-' l i p  + 0,n -+ oc for p E ~ I V .  

3 ak = 0, as f ,  # 0. 
Now, 

l(fn,gn)p -(f,g)pl= I(fnygn)p -(fn7g)Y +(L.g)p -(f,g)pl 

= ~(f~,g:-~)-(~,gp-~)+(f~>gp-~)-(f >gp-l)1 

= l(fn,g:-' -gp-')+(fn -f 7gp-1)l 

2 I(fn, g;-' - gp-l)l +l(fn - f , gp-l)I 

Ilfn 11 g:-l - g p-l 11 + Ilfn - f l i p  . Ilgll:l -+ O P 
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(e) Let {ek),"=, be an orthonormal set and 
n 

consider C a k e k  = 0, then 

a k e k e j =  15 j r n  

Let {em)m=1,2 ,...., n be an orthonormal 

sequence in LP and 

n 

f = C a m e m ,  for some am E R. 
m=l 

Thus, 

Hence 

is its Fourier coefficient. 
Let us now generate the 

orthonormal sequence {ek)ke~OJvlV from a 

given linearly independent set {A )  ,,,,, , ,.,,,. 
The procedure is given as follows: The first 

element, e0 7 is chose as 
r TI 

eo = A ,el = 5 in which 

Ilfo l l ,  115 1 1  , 
5 = f; - ( f ; , e k ) ,  .e, , while the rest are 

en =- ' where 
Ilvn I I  , 

Let us show that Vn is indeed orthogonal to 

any of {e,):;:, as follows: 

n-l 

= ( f n 7 e m ) P  - x ( f n ~ e k ) P  ' ( e k 7 e m ) P  
k=l 

Let us now exhibit a set of orthonormal 

polynomials in Lp ([- l , l ] )  for all p E 21V , 

by the Gram-Schmidt procedure [8] above. 

b. Construction Of Higher Orthonormal 

Polynomials In L, ([-1 ,1]) .  

We first consider a linearly 

independent set (1, t ,  t2 ,....: t k  ,....,) and 
derive the polynomials from this set, which 
can be re-written as 

{ fk ( t )  = t k ; k  E (0 )  u I V ) .  For the first of 

these polynomials,, set Vo ( t )  = f, ( t )  = 1, 

then 
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Vn Thus from en ( t )  = - we have the first of 
IIvnIl , 

these polynomials as we then have that 
1 

en ( t )  = (i)" 
1 

Note that for p  = 2,en ( t )  = d-. 
2 

For el ( t )  , we find 

6 ( t ) = f i  - ( A 7 e k ) Y  ' e k  

= t -O.ek ;  as ( A , e k )  =O 
P 

= t  

This implies that 

and since 

It is observed that for p  = 2, 

el ( t )  = -t t 
For @ ; we use 

& ( t ) = h - x ( f i , e k )  .ek to havethat 
k=O P 

1 
v 2 ( t )  = t 2  -- 

3 
since 

then 

is the third orthonormal polynomial in the For & : We have 
inner product LY ([-l,l]) function space, 2 

v , ( t ) = ~ - C ( f , , e ~ ) ~ . e ,  ~ h u s  
k=O 

which reduces to e2 ( t )  = 
1 

& ( t ) = - [ ( p + 3 ) t 3 - ( p + ~ ) t ]  and 
the classical case of p  = 2. P + ~  

The next orthonormal polynomial in LP ([-1,1]) is thus 
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This gargantuan expression reduces to 

when p = 2 .  
Anyone not devoid of patience can 

exhibit as many of these orthonormal 
polynomials as possible. At every point of 
these constructions we can derive the 

orthonormal sequence {e, ( t ) ) ,  =,,,,,, in term 

of the classical Legendre Polynomials when 
we set p = 2. But more than Legendre 

Polynomials are arrived at with ( . , a )  in 
P 

LP ([-l,l]) for all p E 2IV For example 

for p = 4 :  

n-degree polynomial in t E [-l,l], with the 

properties that 

.n,2) = Jy 
and q n , 2 )  ( t )  = Legendre Polynomials. 

The generalization afforded by (.;) could 
P 

also be sought . for other orthogonal 

polynomials in L2 ([o, a)), L2 ((a, a)) 

and their representation, properties, zeros, 
generating functions, derivatives about the 
origin, recurrence relations,.. . studied in the 
style of Szego's Orthogonal Polynomials [9]. 

IX. CONCLUSION 

The theory of inner product space and it 

applications in the LP -spaces is worth a 

second look since the inner product (.;),on 

L~ is one in a countable 
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