HISTOMORPHOLOGICAL AND BIOCHEMICAL STUDIES OF THE PANCREATIC B-CELLS, KIDNEY AND LIVER IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS TREATED WITH METHANOLIC EXTRACT OF *HIBISCUS SABDARIFFA* (LINN).

ΒY

ADEYEMI, DAVID OLAWALE

B.Sc. (ILORIN) M.Sc. (IFE)

Submitted to the Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, College of Health Science, Obafemi Awolowo University, Ile Ife

In partial fulfillment of the requirements for the award of Doctor of Philosophy degree in Anatomy

AUTHORIZATION TO COPY

Author: ADEYEMI, David Olawale.

Title:Histomorphological and Biochemical Studies of the Pancreatic β-cells, Kidney and
Liver in Streptozotocin-Induced Diabetic Wistar Rats Treated with Methanolic
Extract of *Hibiscus sabdariffa* (Linn).

Degree: Ph.D. (Anatomy)

Year 2012

I, **ADEYEMI**, David Olawale hereby authorize the Hezekiah Oluwasanmi Library to copy my thesis in part or in whole in response to request from individuals and or organizations for the purpose of private study or research.

Signature

Date

CERTIFICATION BY SUPERVISOR

I certify that Adeyemi David Olawale carried out this research work during the course of his studies in the Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile Ife.

.....

.....

Dr. O.S Adewole

Date

(MBBS., M.Sc., Ph.D.)

Supervisor

DEDICATION

This project is dedicated to my beloved parents- the best parent in the world, Chief and Mrs. T.D. Adeyemi; my sweetheart, Atinuke and my beautiful daughter, Oluwabusayomi. I love you all

ACKNOWLEDGEMENTS

To God is the Glory for He has done great things in my life. The strength He gave me, His protection over me and His Grace upon my life have worked to make this program a success.

My profound appreciation goes to my supervisor, Dr. O.S Adewole, without whose support and painstaking correction, this research would not have been a success. Your encouragement at all times is highly appreciated. I am also grateful to the Head of Department of Anatomy; Prof. L.M. Oginni for his encouragement and unrelenting efforts in providing useful equipments that has helped in the smooth running of the research.

I also appreciate all other members of Staff of the Department of Anatomy and Cell Biology. Mrs. D. O. Osewa, your motherly role in the department is highly appreciated. May your good works be rewarded here on earth and in heaven in Jesus name.

My special thanks also go to my teacher and friend, Dr. Efere Martins Obuotor of Biochemistry Department. You made provision for all facilities I used for my bench work and even made your office available to me day and night to make my work easier. May God in His infinite mercy bless you.

My sincere appreciation also goes to my friends and colleagues who in one way or the other have affected my life for good and contributed to my success. Mr. Gbela, Your contribution to this work in the area of very good slide is appreciated. You are a father.

My special appreciation goes to my sweet heart, Tinuke and my lovely daughter Oluwabusayomi for bearing with me during the course of this research. Finally, my gratitude goes to my parents – Chief and Mrs. T.D. Adeyemi. I shall for ever appreciate you. Thanks for your inestimable love and support in all respect towards my progress in academics and prosperity in life. I cannot imagine what would have become of me if I was not opportuned to have you as my parents. May you live long to continue to reap

the	fruits	of	your	labour	in	Jesus'	name.	Amen	!
-----	--------	----	------	--------	----	--------	-------	------	---

TABLE OF CONTENTS

	Ι	Page
Title page		i
Authorization to copy		ii
Certification		iii
Dedication		iv
Acknowledgement		v
Table of Contents		vi
List of Figures		xvii
List of Tables		xviii
List of Plates		xix
List of Abbreviations		xxiii
Abstracts		xxvi
CHAPTER ONE		
1.0 Introduction		1
1.1 Statement of Research Problem	6	
1.2 Justification of the Proposed Research	6	
1.3 Objectives of Proposed Research		7
CHAPTER TWO		

LITERATURE REVIEW

2.1	Diabetes Mellitus		8
2.1.1	Definition and Description of Diabetes Mellitus	8	
2.1.2	Classification of Diabetes Mellitus		10
2.1.2.1	Type 1 Diabetes Mellitus		12
2.1.2.1.1	Type 1 Idiopathic Diabetes Mellitus		13
2.1.2.2	Type 2 Diabetes Mellitus.		14
2.1.2.3	Other Specific Types of Diabetes mellitus		15
2.1.2.3.1	Genetic Defects of the β -Cell		15
2.1.2.3.2	Genetic Defects in Insulin Action		17
2.1.2.3.3	Diseases of the Exocrine Pancreas		17
2.1.2.3.4	Endocrinopathies		18
2.1.2.3.5	Drug-or Chemical-Induced Diabetes		18
2.1.2.3.6	Infections		19
2.1.2.3.7	Uncommon forms of Immune-Mediated Diabetes		19
2.1.2.3.8	Other Genetic Syndromes Sometimes associated with Diabetes		19
2.1.2.4	Gestational Diabetes Mellitus (GDM)		20
2.1.3	Impaired Glucose Tolerance (IGT) and Impaired Fasting Glucose	(IFG)	21
2.2	Streptozotocin		22
2.2.1	Structure and Chemical Properties of Streptozotocin		23
2.2.2	Mechanism of Streptozotocin Action in the β -Cells of Rat's Pancreas	24	

2.3	Pancreas		28
2.3.1	Gross Anatomy of the Pancreas		29
2.3.2	The Acinar Units		29
2.3.2.1	Microscopic Structure of Acinar Cells	30	
2.3.2.2	Secretion Products of the Acinar Cells	32	

2.3.3	The Ductal System		34
2.3.3.1	Microscopic Structure of the Ducts		34
2.3.3.2	Fluid and Bicarbonate Secretion by Duct Cells	36	
2.3.4	Islets of Langerhans		37
2.3.4.1	General Composition of Islets	37	
2.3.4.2	Cell Types in the Islets	44	
2.4	The Liver		43
2.4.1	Anatomy of the liver		43
2.4.2	Development and microstructure of the liver		45
2.4.2.1	Cells of the liver	46	
2.4.2.1 2.4.2.2	Cells of the liver Hepatic plates (cords)	46	48
		46	48 48
2.4.2.2	Hepatic plates (cords)	46 49	
2.4.2.2 2.5	Hepatic plates (cords) Kidney		
2.4.2.2 2.5 2.5.1	Hepatic plates (cords) Kidney Anatomy of the kidney		48
2.4.2.22.52.5.12.5.2	Hepatic plates (cords) Kidney Anatomy of the kidney Development of the kidney	49	48
 2.4.2.2 2.5 2.5.1 2.5.2 2.5.3 	Hepatic plates (cords) Kidney Anatomy of the kidney Development of the kidney General renal structure	49	48 50

2.5.4.3	Renal interstitium		56
2.6	Hibiscus sabdariffa		57
2.6.1	Origin and Distribution	58	
2.6.2	Food Uses and Value		58
2.6.3	Ethno-Medical Uses		59
2.6.4	Chemical Constituents	61	

CHAPTER THREE			
MATERIALS AND METHODS			
3.1	Materials		62
3.2	Animals		63
3.3	Plant material		63
3.4	Preparation of Methanolic Extract of Hibiscus sabdariffa Calyx	64	
3.5	Acute Toxicity Testing		64
3.6	Induction of Experimental Diabetes and Hibiscus sabdariffa		
	Extract Administration		65
3.7	Determination of Blood Glucose Level		65
3.8	Sacrifice of Animals and Surgical Removal of Tissues		66
3.9	Determination of the Weight of each Organ		66
3.10	Histological and Histochemical Procedures	66	
3.11	Staining Procedures		67
3.11.1	Haematoxylin and Eosin (H and E)		68
3.11.1.1	Reagents Required		68
3.11.1.2	Haematoxylin and Eosin Staining Procedure		68
3.11.2	Modified Gomori Aldehyde Fuchsin		69
3.11.2.1	Reagents Required		70
3.11.2.2	Modified Gomori Aldehyde Fuchsin Procedure		71

3.11.3	Chrome Alum Haematoxylin-Phloxine for α and β Cells		72
3.11.3.1	Reagents Required		73
3.11.3.2	Procedure for Gomori Chrome Alum Haematoxylin Phloxine		74
3.11.4	Periodic Acid Schiff (PAS) Staining		75
3.11.4.1	Reagents Required		75
3.11.4.2	PAS Staining Procedure		76
3.11.4.3	Diastase Control for PAS Staining		77
3.11.5	Gordon and Sweets Reticulin Staining		78
3.11.5.1	Reagents Required		78
3.11.5.2	Gordon and Sweets Reticulin Staining Procedure		80
3.11.6	Masson's Trichrome Stain for Collagen		81
3.11.6.1	Reagents Required		81
3.11.6.2	Masson's Trichrome Staining Procedure		83
3.12	Photomicrography	83	
3.13	Histomorphometry		84
3.13.1	Pancreatic Islet Morphometry		84
3.13.2	Kidney Morphometry		84
3.14	Biochemical Estimations in Serum	85	
3.14.1	Assay for the Serum Lipid Profiles	85	
3.14.1.1	Assay for Triglycerides		85
3.14.1.1.1	Assay Principle	85	
3.14.1.1.2	Sample Collection and Preparation		86

3.14.1.1.3	Reagent Composition		86
3.14.1.1.4	Reagent (R ₁) Preparation		86
3.14.1.1.5	Assay Procedure		87
3.14.1.1.6	Calculation		87
3.14.1.2	Assay for Total Cholesterol		87
3.14.1.2.1	Assay Principle	88	
3.14.1.2.2	Sample Collection and Preparation		88
3.14.1.2.3	Reagent Composition		88
3.14.1.2.4	Assay Procedure		89
3.14.1.2.5	Calculation		89
3.14.1.3	Assay for High Density Lipoprotein-Cholesterol (HDLC)	89	
3.14.1.3.1	Assay Principle	90	
3.14.1.3.2	Sample Collection and Preparation		90
3.14.1.3.3	Reagent Composition		90
3.14.1.3.4	Reagent Preparation		90
3.14.1.3.5	Assay Procedure		91
3.14.1.3.5.1	Precipitation		91
3.14.1.3.5.2	Cholesterol CHOD – PAP Assay	91	
3.14.1.3.6	Calculation		92
3.14.1.4	Low Density Lipoprotein – Cholesterol	92	
3.14.1.5	Very Low Density Lipoprotein – Cholesterol		92

3.14.1.6	Antiatherogenic Index (AAI)		92
3.14.2	Assay for Liver Function Test Markers		93
3.14.2.1	Assay for Serum Aminotransferases (AST and ALT)		93
3.14.2.1.1	Assay for Aspartate Amino Transferase (AST)	93	
3.14.2.1.1.1	Sample Collection and Preparation		93
3.14.2.1.1.2	Reagent composition		94
3.14.2.1.1.3	Assay Procedure		94
3.14.2.1.1.4	Calculation		94
3.14.2.1.2	Assay for Alanine Amino Transferase (ALT)	95	
3.14.2.1.2.1	Sample Collection and Preparation		95
3.14.2.1.2.2	Reagent Composition		95
3.14.2.1.2.3	Assay Procedure		96
3.14.2.1.2.4	Calculation		96
3.14.2.2	Assay for Serum Proteins		97
3.14.2.2.1	Assay for Total Protein	97	
3.14.2.2.1.1	Sample Collection and Preparation		97
3.14.2.2.1.2	Reagent Composition		97
3.14.2.2.1.3	Assay Procedure		98
3.14.2.2.1.4	Calculation		98

3.14.2.2.2Assay for Serum Albumin98

3.14.2.2.2.1	Sample Collection and Preparation		98
3.14.2.2.2.2	Reagent Composition		99
3.14.2.2.2.3	Assay Procedure		99
3.14.2.2.2.4	Calculation		99
3.14.2.3	Assay for Alkaline Phosphatase		100
3.14.2.3.1	Assay Principle		100
3.14.2.3.2	Reagent Composition and Preparation	100	
3.14.2.3.3	Assay Procedure		100
3.14.2.3.4	Calculation		100
3.14.3	Assay for Kidney Function Test Markers		101
3.14.3.1	Assay for Creatinine		101
3.14.3.1.1	Assay Principle		101
3.14.3.1.2	Sample Collection and Preparation		102
3.14.3.1.3	Reagent Composition and Preparation	102	
3.14.3.1.4	Assay Procedure		102
3.14.3.1.5	Calculation		102
3.14.3.2	Assay for Urea		103
3.14.3.2.1	Assay Principle		103
3.14.3.2.2	Sample Collection and Preparation		103
3.14.3.2.3	Reagent Composition		103
3.14.3.2.3	Reagent Preparation		104

3.14.3.2.4	Assay Procedure		104
3.14.3.2.5	Calculation		104
3.15	Biochemical Estimations in the Tissues	105	
3.15.1	Assay for Catalase		105
3.15.1.1	Assay Principle	105	
3.15.1.2	Preparation of Tissue Homogenate		105
3.15.1.3	Kit Content		106
3.15.1.4	Reagent Preparation		106
3.15.1.5	Assay Procedure		107
3.15.1.6	Calculation and Catalase Determination	108	
3.15.2	Assay for Glutathione Peroxidase (GPX)	108	
3.15.2.1	Assay Principle	108	
3.15.2.2	Preparation of Tissue Homogenate		109
3.15.2.3	Kit Content		109
3.15.2.4	Reagent Preparation		109
3.15.2.5	Assay Procedure		111
3.15.2.2	Calculation		111
3.15.3	Assay for Superoxide Dismutase	112	
3.15.3.1	Assay Principle	112	

xviii

3.15.3.2	Preparation of Tissue Homogenate		112
3.15.3.3	Kit Content		113
3.15.3.4	Reagent Preparation		113
3.15.3.5	Assay Procedure		114
3.15.3.6	Calculation		115
3.15.4	Assay for Glutathione		115
3.15.4.1	Assay Principle	115	
3.15.4.2	Preparation of Tissue Homogenate		115
3.15.4.3	Kit Content		116
3.15.4.4	Assay Procedure		116
3.15.4.5	Calculation		116
3.15.5	Assay for TBARS	117	
3.15.5.1	Assay Principle	117	
3.15.5.2	Preparation of Tissue Homogenate		117
3.15.5.3	Kit Content		118
3.15.5.4	Sample Preparation		118
3.15.5.5	Standard Preparation		118
3.15.5.6	Assay Procedure		119

3.15.5	15.5.6 Calculation and TBARS Determination		119	
3.16 Ser		Serum Insulin Concentrations	120	
3.16.1		Kit Content		120
3.16.2	2	Reagent Preparation		120
3.16.3	6	Assay Procedure		121
3.16.4	Ļ	Calculation		122
3.17		Statistical Analysis		122
CHAP	TER FOU	R	123	
RESUL	.TS			123
4.1	Effects	of Hibiscus sabdariffa on the body weight		123
4.2	4.2 Effects of <i>Hibiscus sabdariffa</i> on the blood glucose level		123	
4.3	Acute	toxicity Result		127
4.4	4.4 Effects of <i>Hibiscus sabdariffa</i> on the serum lipid profiles		127	
4.5	Effects	of Hibiscus sabdariffa on the serum insulin level		127
4.6	4.6 Effects of <i>Hibiscus sabdariffa</i> on the liver function test enzymes		130	
4.7	1.7 Effects of <i>Hibiscus sabdariffa</i> on serum proteins		130	
4.8	8 Effects of <i>Hibiscus sabdariffa</i> on the kidney function test markers		133	
4.9	Effects	of Hibiscus sabdariffa on non enzymatic antioxidant		133
4.10	Effects of Hibiscus sabdariffa on antioxidant enzymes		135	
4.11	Effects of <i>Hibiscus sabdariffa</i> on lipid peroxidation marker 1		138	

4.12	Effects of <i>Hibiscus Sabdariffa</i> on the weights of pancreas, kidney and liver 139		139
4.13	Histomorphological examination of the pancreatic β-cells, liver and kidney 14		141
4.14	Histomorphometry results		175
4.14.1	Pancreatic islet morphometry		175
4.14.2	Kidney morphometry		175
СНАРТ	ER FIVE	179	
DISCUS	SSION		179
5.1	Discussion (Preamble)	179	
5.1.1	Effects of Hibiscus sabdariffa on body weight	179	
5.1.2	Antihyperglycaemic effects of Hibiscus sabdariffa		180
5.1.3	Antihyperlipidaemic activities of Hibiscus sabdariffa	181	
5.1.4	Antioxidant activities of Hibiscus sabdariffa		182
5.1.5	Histopathological changes in the pancreatic β -cells		183
5.1.6	Histopathological and histochemical changes in the liver	185	
5.1.7	Histopathological and histochemical changes in the kidney		186
5.2	Conclusion		188
REFERENCES 189			
APPENDICES 223			

LIST OF FIGURES

Fig. 2.1	Structure of Streptozotocin		23
Fig. 2.2	The Mechanism of Streptozotocin-Induced Toxic Events in β -cells of		
	Rat Pancreas		27
Fig. 2.3	Hibiscus sabdariffa plant		58
Fig. 4.1	Weekly Changes in the body weights of the animals		124
Fig. 4.2	Weekly Changes in the body weights of the animals		125
Fig. 4.3	Effects of <i>H. sabdariffa</i> on the Serum Insulin Levels		129
Fig. 4.4	Effects of <i>H. sabdariffa</i> on the Activity Serum Transaminases	131	
Fig. 4.5	Effects of <i>H. sabdariffa</i> on the Activity Serum Alkaline Phosphatase	131	
Fig. 4.6	Effects of H. sabdariffa on the Serum Proteins	132	
Fig. 4.7	Effects of <i>H. sabdariffa</i> on the Albumin /Globulin Ratio	132	
Fig. 4.8	Effects of <i>H. sabdariffa</i> on the Serum Creatinine Concentration	134	
Fig. 4.9	Effects of <i>H. sabdariffa</i> on the Serum Urea Concentration	134	
Fig. 4.10	Effects of H. sabdariffa on Glutathione Concentration	135	
Fig. 4.11	Effects of <i>H. sabdariffa</i> on Catalase Activity		136
Fig. 4.12	Effects of <i>H. sabdariffa</i> on Superoxide Dismutase (SOD) Activity	137	
Fig. 4.13	Effects of <i>H. sabdariffa</i> on Glutathione Peroxidase (GPx) Activity	137	

Fig. 4.16	Effects of <i>H. sabdariffa</i> on the kidney weight	140
Fig. 4.17	Effects of <i>H. sabdariffa</i> on the liver weight	140

LIST OF TABLES

Table 2.1:	Relative Frequency and Distribution of Cell Types within the Islet		40
Table 4.1	Effects of Hibiscus sabdariffa on the body weight and blood glucose		
	level of STZ induced Diabetic rats	126	
Table 4.2	Effects of Hibiscus sabdariffa on the serum lipid profiles of STZ- induced		
	Diabetic rats		128
Table 4.3	Pancreatic Islet Morphometry Results		176
Table 4.4	Kidney Glomerular Morphometry Results	177	
Table 4.5	Kidney Tubular Morphometry Results		178
OBHHL			

LIST OF PLATES

Plate 4.1A	Photomicrograph of group A rats' pancreatic islet stained with H and E 141	
Plate 4.1B	Photomicrograph of group B rats' pancreatic islet stained with H and E 141	
Plate 4.1C	Photomicrograph of group C rats' pancreatic islet stained with H and E 142	
Plate 4.1D	Photomicrograph of group D rats' pancreatic islet stained with H and E 142	
Plate 4.1E	Photomicrograph of group E rats' pancreatic islet stained with H and E 143	
Plate 4.2A	Photomicrograph of group A rats' pancreatic islet stained with Gomori	
	chrome alum haematoxylin phloxine	144
Plate 4.2B	Photomicrograph of group B rats' pancreatic islet stained with Gomori	
	chrome alum haematoxylin phloxine	144
Plate 4.2C	Photomicrograph of group C rats' pancreatic islet stained with Gomori	
	chrome alum haematoxylin phloxine	145
Plate 4.2D	Photomicrograph of group D rats' pancreatic islet stained with Gomori	
	chrome alum haematoxylin phloxine	145
Plate 4.2E	Photomicrograph of group E rats' pancreatic islet stained with Gomori	
	chrome alum haematoxylin phloxine	146
Plate 4.3A	Photomicrograph of group A rats' pancreatic islet stained with Gomori	
	aldehyde fuchsin	147
Plate 4.3B	Photomicrograph of group B rats' pancreatic islet stained with Gomori	

	aldehyde fuchsin		147
Plate 4.3C	Photomicrograph of group C rats' pancreatic islet stained with Gomori		
	aldehyde fuchsin		148
Plate 4.3D	Photomicrograph of group D rats' pancreatic islet stained with Gomori	2	
	aldehyde fuchsin		148
Plate 4.3E	Photomicrograph of group E rats' pancreatic islet stained with Gomori		
	aldehyde fuchsin		149
Plate 4.4A	Photomicrograph of the liver section of group A rats stained with		
	H and E		150
Plate 4.4B	Photomicrograph of the liver section of group B rats stained with		
	H and E	150	
Plate 4.4C	Photomicrograph of the liver section of group C rats stained with		
	H and E	151	
Plate 4.4D	Photomicrograph of the liver section of group D rats stained with		
	H and E	151	
Plate 4.4E	Photomicrograph of the liver section of group E rats stained with		
	H and E	152	
Plate 4.5A	A photomicrograph showing silver impregnated section of the liver of		

	group A rats stained with Gordon and Sweets reticulin stain		153
Plate 4.5B	A photomicrograph showing silver impregnated section of the liver of		
	group B rats stained with Gordon and Sweets reticulin stain		153
Plate 4.5C	photomicrograph showing silver impregnated section of the liver of		
	group C rats stained with Gordon and Sweets reticulin stain	2	154
Plate 4.5D	A photomicrograph showing silver impregnated section of the liver of		
	group rats stained with Gordon and Sweets reticulin stain		154
Plate 4.5E	photomicrograph showing silver impregnated section of the liver of		
	group E rats stained with Gordon and Sweets reticulin stain		155
Plate 4.6A	A photomicrograph showing the liver section of group A rats stained		
	using PAS with diastase control	156	
Plate 4.6B	A photomicrograph showing the liver section of group B rats stained		
	using PAS with diastase control	157	
Plate 4.6C	A photomicrograph showing the liver section of group C rats stained		
	using PAS with diastase control	158	
Plate 4.6D	A photomicrograph showing the liver section of group D rats stained		
	using PAS with diastase control	159	
Plate 4.6E	A photomicrograph showing the liver section of group E rats stained		
	using PAS with diastase control	160	
Plate 4.7A	Photomicrograph of the liver section of group A rats stained with		

	Masson Trichrome Stain.	161
Plate 4.7B	Photomicrograph of the liver section of group B rats stained with	
	Masson Trichrome Stain.	161
Plate 4.7C	Photomicrograph of the liver section of group C rats stained with	
	Masson Trichrome Stain.	162
Plate 4.7D	Photomicrograph of the liver section of group D rats stained with	
	Masson Trichrome Stain.	162
Plate 4.7E	Photomicrograph of the liver section of group E rats stained with	
	Masson Trichrome Stain.	163
Plate 4.8A	Photomicrograph showing a section of the kidney of group A rats	
	stained with H and E.	164
Plate 4.8B	Photomicrograph showing a section of the kidney of group B rats	-
	stained with H and E.	164
Plate 4.8C	Photomicrograph showing a section of the kidney of group C rats	
	stained with H and E.	165
Plate 4.8D	Photomicrograph showing a section of the kidney of group D rats	
	stained with H and E.	165
Plate 4.8E	Photomicrograph showing a section of the kidney of group E rats	
	stained with H and E.	166
Plate 4.9A	A photomicrograph showing the kidney section of group A rats	
	stained using PAS with diastase control.	167
Plate 4.9B	A photomicrograph showing the kidney section of group B rats	
	stained using PAS with diastase control.	168

Plate 4.9C	A photomicrograph showing the kidney section of group C rats		
	stained using PAS with diastase control.		169
Plate 4.9D	A photomicrograph showing the kidney section of group D rats		
	stained using PAS with diastase control.		170
Plate 4.9E	A photomicrograph showing the kidney section of group E rats		
	stained using PAS with diastase control.	2	171
Plate 4.10A	Photomicrograph of the kidney section of group A rats stained		
	with Masson Trichrome Stain.		172
Plate 4.10B	Photomicrograph of the kidney section of group B rats stained		
	with Masson Trichrome Stain.	172	
Plate 4.10C	Photomicrograph of the kidney section of group C rats stained		
	with Masson Trichrome Stain.	173	
Plate 4.10D	Photomicrograph of the kidney section of group D rats stained		
	with Masson Trichrome Stain.	173	
Plate 4.10E	Photomicrograph of the kidney section of group E rats stained		
	with Masson Trichrome Stain.		174

LIST OF ABBREVIATIONS

- AAI antiatherogenic index
- AD Alzheimer's disease
- ADP adenosine triphosphate
- ALP alkaline phosphatase
- ALT alanine amino transferase
- ANOVA analysis of variance

AST	aspartate amino transferase
АТР	adenosine triphosphate
cGMP	cyclic guanylyl monophosphate
D.A.N.	Diabetes Association of Nigeria
DM	diabetes mellitus
DNA	Deoxyribonucleic acid
FPG	fasting plasma glucose
GAD	glutamic acid decarboxylase,
GDM	gestational diabetes mellitus
GFR	glomerular filtration rate
GPx	glutathione peroxidase
GSH	glutathione

- H₂O₂ hydrogen peroxide
- HDLC high density lipoprotein cholesterol
- HLA human leukocyte antigen
- HNF hepatocyte nuclear factor
- HSCE Hibiscus sabdariffa calyx extract
- HSE *Hibiscus sabdariffa* extract
- IAAs autoantibodies to insulin,
- ICAs islet cell autoantibodies,
- IDDM insulin-dependent diabetes mellitus
- IFG impaired fasting glucose
- IGT impaired glucose tolerance
- IU international unit
- LD₅₀ median lethal dose
- LDLC low density lipoprotein cholesterol
- MDA malondialdehyde

MELAS mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome

MNU nitrosamide methylnitrosourea

MODY Maturity-onset diabetes in youth

mRNA messanger ribonucleic acid

NAD^+	Nicotinamide adenine dinucleotide (oxidized)
NADH	Nicotinamide adenine dinucleotide (reduced)
NADP ⁺ Nicotir	namide adenine dinucleotide phosphate (oxidized)
NCD	Non-communicable diseases
NDDG	National Diabetes Data Group
NIDDM non-insulin-dependent diabetes mellitus	
NSE	neuron specific enolase
OGTT	oral glucose tolerance test
ОН	hydroxyl radical
PAI-1	plasminogen activator inhibitor-1
RER	rough endoplasmic reticulum
ROS	reactive oxygen species
r.p.m.	revolutions per minute
r-RNA	ribosomal ribonucleic acid
SEM	standard error of mean
SOD	superoxide dismutase
SRP	signal recognition particle
STZ	streptozotocin

TBARS thiobarbituric acid reactive substances

- TBA Thiobarbituric acid
- TC total cholesterol
- TCA Trichloroacetic acid
- TGL triglyceride
- TH tyrosine hydroxylase
- t-RNA transfer ribonucleic acid
- VLDLC very low density lipoprotein cholesterol
- W.H.O. World Health Organization

ABSTRACT

This study investigated the effects of methanolic extract of *Hibiscus sabdariffa L*. on the morphology, morphometry and histochemistry of the pancreatic β -cells, liver and kidney of experimentally–induced diabetic Wistar rats, assessed the effects of this extract on the blood glucose, serum insulin, lipid profiles, liver function markers, Kidney function markers, antioxidants and lipid peroxidation markers of the rats, and compared the efficacy of the extract with that of protamine zinc insulin. This was with a view to determining the anti-diabetic activities of *Hibiscus sabdariffa L*.

Sixty adult Wistar rats were randomly assigned into five groups (A, B, C, D, and E) of twelve rats each. Group A was the control, group B was untreated diabetic group, group C was H. sabdariffa -treated diabetic group, group D was insulin-treated diabetic group while group E was the extract control group. Diabetes mellitus was induced in groups B, C and D by a single intra-peritoneal injection of 80 mg/kg streptozotocin (Sigma, USA) dissolved in 0.1 M citrate buffer; groups A and E rats received intra-peritoneal injection of equivalent volume of citrate buffer and all the animals were monitored for another four week period. Daily intra-peritoneal injection of 1738.76 mg/kg b.w. H. sabdariffa was administered to group C and E rats for fifteen days, 1 IU/kg/day of insulin was administered to group D rats for fifteen days while rats in groups B were left untreated. The animals were monitored for another four week period. At the end of the experiment, the rats were sacrificed under chloroform anaesthesia and the pancreas, liver and kidneys of each animal were removed and weighed. The pancreas was fixed in Bouins fluid while the kidneys and liver were fixed in 10 % formol saline. The tissues were processed for paraffin embedding and sections of 5µm thickness were produced and stained with H and E for general histological examination of the tissues, and with special stains to histologically demonstrate β -cells of the pancreatic islets, collagen fibres in liver and kidney, reticular fibres in the liver, basement membrane in the kidney and histochemically demonstrate glycogen in the liver and kidney. The data obtained were analyzed with descriptive and inferential statistics.

The result showed a significant decrease (F = 48.20; df = 11; p < 0.05) in the blood glucose concentration of *H. sabdariffa*-treated group (4.26 ± 0.153 mmol/L) when compared to that of the untreated diabetic group (23.80 ± 2.388 mmol/L) and insulin treated group (11.25 ± 1.465 mmol/L). Histopathological examination of the stained pancreatic sections showed degeneration and necrosis of the pancreatic β -cells and vacuolation of the islets in the untreated diabetic group as well as the insulin treated group while in the extract treated diabetic group, the numerical density of pancreatic β -cells increased suggesting regeneration of these cells. Examination of the liver sections revealed hepatic fibrosis and excessive glycogen deposition in the liver. These morphological changes were ameliorated in the extract-treated diabetic group. Examination of the kidney section revealed that extract of *H. sabdariffa* had nephroprotective effects on the STZ diabetic induced nephropathy which is marked by glomerular necrosis, thickening of the glomerular and tubular basement membranes and renal interstitial fibrosis.

The study demonstrated that *H. sabdariffa* possesses anti-hyperglycaemic, anti-hyperlipidaemic, antioxidant, hepatoprotective and nephropretective activities as well as the ability to induce regeneration of insulin producing pancreatic β -cells of STZ-induced diabetic rats, justifying its ethnomedicinal use.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Diabetes mellitus (DM), a metabolic disorder affecting carbohydrate, fats and protein metabolism, is one of the most common metabolic disorders with a worldwide prevalence estimated to be between 1% and 5% of the world population (Kameswararao *et al.*, 2003; Petal and Rybczynski, 2003). It is considered to be at an epidemic level by the World Health Organization (Petal and Rybczynski, 2003). In 2000, according to the World Health Organization, at least 171 million people worldwide suffer from diabetes, or 2.8% of the population (Wild *et al.*, 2004). Its incidence is increasing rapidly, and it is estimated that by 2030, this number will almost double (Wild *et al.*, 2004). The vast majority of cases of diabetes fall into two broad etiopathogenetic categories. In one category (type 1 diabetes), the cause is an absolute deficiency of insulin secretion (Gavin *et al.*, 1997). Individuals at increased risk of developing this type of diabetes can often be identified by serological evidence of an autoimmune pathologic process occurring in the pancreatic islets and by genetic markers (Atkinson and Maclaren, 1994). In the other, much more prevalent category (type 2 diabetes), the cause is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. In the latter category, a degree of hyperglycaemia sufficient to cause pathologic and functional changes in various target tissues, but without clinical symptoms, may be present for a long period before diabetes is detected.

The prevalence of diabetes mellitus is rising worldwide in both developed and developing countries (Dunstan *et al.,* 2002). Its worldwide prevalence is about 2%, and the prevalence in Nigeria is 2.2%, which means that about 2.6 million Nigerians are diabetic (The Expert Committee on NCD, 1997). It is known that 50% of the affected individuals (about 1.3

million Nigerians) do not even know that they have the disease (The Expert Committee on NCD, 1997). Complications of diabetes mellitus have been found to set in long before clinical manifestation of the disease (Young and Mustard, 2001; Harris *et al.*, 1998). Diabetes is likely to remain a significant threat to public health in the years to come. In the absence of effective and affordable intervention for either type of diabetes, the frequency of the disease will escalate worldwide, with a major impact on the populations of the developing countries (Marix, 2002).

Diabetes is associated with vascular and renal dysfunction characterized by hypertension, dyslipidaemia and arteriosclerosis (Freener and King, 1997). Increased free radical generation and oxidative stress are hypothesized to play an important role in pathogenesis of diabetes and its late complications (Anuradha and Svaardsudd, 2001). Possible sources of oxidative stress and damage to proteins in diabetes include free radicals generated by auto-oxidation reactions of sugars and sugars adducts to proteins and by auto-oxidation of unsaturated lipids in plasma and membrane proteins. The oxidative stress may be amplified by a continuing cycle of metabolic stress, tissue damage, and cell death, leading to increased free radical production and compromised free radical inhibitory and scavenger systems, which further exacerbate the oxidative stress (Baynes, 1991). Indeed, there is widespread acceptance of possible role of reactive oxygen species (ROS) generated as a result of hyperglycaemia in causing many of the complications of diabetes such as nephropathy, retinopathy, neuropathy (Giugliano et al., 1996), and cardiomyopathy (Rodrigues et al., 1992). Glycation reaction in diabetes occurs in various tissues including β -cells (Myint *et al.*, 1995; Tajiri *et al.*, 1997). The activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, which is low in islet cells when compared to other tissues, becomes further worsened under diabetic conditions (Kawamura et al., 1994). Further, the presence of higher glucose or glycated protein concentration enhances lipid peroxidation (Hicks et al., 1989), and furthermore lipid peroxides may increase the extent of advanced glycation products (Tiedge et al., 1997).

Currently available therapy for diabetes mellitus includes insulin and various oral anti-diabetic agents such as sulfonylureas, metformin, α -glucosidase inhibitors, etc. These drugs are used as monotherapy or in combination to achieve better glycaemic control. Each of the above oral agents suffers from a number of serious adverse effects (Williams and Pickup, 1991; Zhang and Moller, 2000). In addition, these antidiabetic drugs manage only hyperglycaemia, a feature of diabetes mellitus leaving the pathogenesis of this disorder. Consequently, there continues to be a high demand for new oral anti-diabetic drugs. The WHO Expert Committee on diabetes recommended further evaluation of the folkloric methods of managing this disease because of the high mortality and morbidity arising from its attendant complications and problems associated with the use of conventional antidiabetic agents (WHO Expert Committee on Diabetes Mellitus, 1980). Several indigenous medicinal plants are employed in the traditional management of diabetes mellitus but there is a need to conduct pharmacognostic and pharmacological studies to ascertain their therapeutic values (Ahmad *et al.*, 2004).

For a long time, it was believed that the endocrine pancreas belonged to a category of tissues that were finally differentiated and irreplaceable in the adult. This was mainly supported by the low replication rate of the cells of endocrine glands in adulthood (Swenne, 1992). In the light of many recent data, this point of view has been drastically changed, and nobody disputes today that endocrine pancreas is a plastic organ and that β -cell mass is dynamic especially because of its significant capacity for adaptation to changes in insulin demand (Bonner-Weir, 2000). This property has been demonstrated in physiological as well pathophysiological conditions such as pregnancy (Scaglia *et al.*, 1995) and obesity (Klöppel *et al.*, 1985). Increase in β -cell mass may occur through increased β -cell replication, increased β -cell size, decreased β -cell death, and differentiation of β -cell mass expansion during development, and has been shown to contribute to increase in β -cell mass in juvenile and adult rodent models (Finegood *et al.*, 1995; Rosenberg, 1995; Bouwens and Klöppel; 1996). After 90% partial

pancreatectomy in rats, age five – six weeks, focal areas consisting of small duct-like structures appear to give rise to new endocrine and exocrine pancreatic tissue (Bonner-Weir *et al.*, 1993).

Among the numerous substrates, hormones, and growth factors involved in endocrine pancreas plasticity and β -cell renewal, the roles of glucose and insulin emerge and have been extensively studied (Bernard-Kargar and Ktorza, 2001). In several species including humans (Tyrberg *et al.*, 1996), glucose appears to play a key regulatory role in pancreatic plasticity because it is a potent stimulus of pancreatic β -cell growth both *in-vivo* (Bonner-Weir *et al.*, 1989; Bernard *et al.*, 1998) and *in-vitro* (Chick, 1973; Schuppin *et al.*, 1993).

For a long time, diabetes has been treated with several medicinal plants (such as *Mormodica charantia, Vernonia amygdalina, Securidaca longipedunculata, Hibiscus sabdariffa, Annona muricata, Bidens pilosa e.t.c.*) or their extracts based on folklore medicine (Akhtar and Ali, 1984). Oral hypoglycaemic agents can produce serious side effects and in addition, they are not suitable for use during pregnancy (Larner, 1985). Therefore, the search for more effective and safer hypoglycaemic agents has continued to be an important area of active research. Furthermore, after the recommendations made by WHO on diabetes mellitus (WHO Expert Committee on Diabetes Mellitus, 1980), investigations on hypoglycaemic agents from medicinal plants have become more important.

Streptozotocin (STZ) is a broad-spectrum antibiotic with oncogenic and diabetogenic properties (Evans *et al*, 1965). The diabetogenic action is mediated by selective destruction of pancreatic beta cells and has been widely utilized as a method for inducing diabetes mellitus in experimental animals and for treatment of malignant beta cell tumours and other neoplasms in human (Rakieten *et al*, 1968). Although the mechanism of the β -cell cytotoxic