

PHARMACOPOEIAL STANDARDIZATION OF THREE NIGERIAN *KHAYA* SPECIES FOR ANTISICKLING PROPERTIES

OYEDAPO, OLOLADE ADESOMI

2015

PHARMACOPOEIAL STANDARDIZATION OF THREE NIGERIAN KHAYA SPECIES FOR ANTISICKLING PROPERTIES

BY

OYEDAPO, OLOLADE ADESOMI

B. Agric. (UNAAB); M. Sc. (Phytomedicines)(OAU, Ile-Ife)

(PHP/12/13/H/2132)

A THESIS SUBMITTED FOR THE AWARD OF

DOCTOR OF PHILOSOPHY (PHYTOMEDICINES)

© Obafemi Awolo[,] For more informatior 'ersity, lle-Ife, Nigeria t ir-help@oauife.edu.ng

AUTHORIZATION TO COPY

OBAFEMI AWOLOWO UNIVERSITY, ILE –IFE, NIGERIA HEZEKIAH OLUWASANMI LIBRARY

POST GRADUATE THESIS

AUTHOR: OloladeAdesomi, OYEDAPO

TITLE: Pharmacopoeial Standardization of Three Nigerian Khaya Species for

Antisickling Properties

DEGREE: Ph.D.

YEAR:2015

I, Ololade.Adesomi**Oyedapo** hereby authorize the Hezekiah OluwasanmiLibrary to copy my thesis, in whole or in part, in response to request from individual researchers or organization for the purpose of private study research.

Signature----- Date------

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

CERTIFICATION

This is to certify that the research work titled 'Pharmacopoeial Standardization of Three Nigerian *Khaya*species for AntisicklingProperties was carried out by OloladeAdesomi OYEDAPO for the award of Ph.D. in the Drug Research and Production Unit, Faculty of Pharmacy, ObafemiAwolowo University, Ile-Ife, Nigeria.

Dr. J. M. Agbedahunsi

(Supervisor)

Signature and date

Prof. H. C.Illoh

(Co-Supervisor)

Signature and date

Prof. C. O. Adewunmi

(Director)

Signature and date

DEDICATION

ToAlmighty God and my Darling husband Barr. Olusegun Festus Oyedapo for his support, words of encouragements and for always being there for me. I thank God for you. I could not have chosen better.

ACKNOWLEDGEMENT

I wish to express my profound gratitude to ALMIGHTY GOD, the Alpha and the Omega who had spared my life and made it possible to start and conclude this programme. May your name be glorified oh Lord. Who is like unto thee oh Lord among other gods?

I wish to thank the University Authority for giving me this great opportunity to undergo this programme. I also thank the Director, Drug Research and Production Unit, Prof. C. O Adewunmifor his assistance and the opportunity given to me to complete the programme.

I wish to place on record my immense gratitude to my supervisor Dr Joseph MorounfoluAgbedahunsi and co-supervisor Prof. H.C Illoh for their supervisions, untiring willingness in training and putting me through the research and reading through the manuscript of this thesis and above all for their intellectual guidance.

I am grateful to Prof. Faluyi of Department of Botany for his guidance, advice and above all for his effort in the microscopic photomicrographs of this research. I am particularly grateful to the Provost Prof. C.T Akanbi who in the face of challenges did not allow this programme to end abruptly and Dr. G. Alebiowu (Chairman, Fac. of Pharmacy PG Committee) for his kindness, supports and advice. I am grateful to Prof. Mrs Lara Orafidiya for her concern, prompt and kind counsel on ways forward during this study. To my Oga, former Vice-Chancellor and mentor Professor Rogers Makanjuola who always ask after my progress on the work and encourage me to finish it on time, I say thank you sir, may your days be long.

I also appreciate my Director and the Deputy Director Teaching and Research Farm, Prof. Sola Ajayi and Dr. Femi Ajayi, Chief Veterinary Officer MrBamideleAdesina for their concerns and enablement to complete this programme without an itch, thank you sir that greater height that you desire, God almighty will take you there.

To Dr (Mrs) ChristianahElusiyan, I thank you for your intellectual guidance and support. To my colleagues and friends Dr (Mrs) TaiwoElufioye, Dr (Mrs) DayoAdepiti, Dr (Mrs) Omisore, Mrs Moji Cyril – Olutayo, thanks for the knowledge we share and useful advice.

To Mr A.J Akinloye of Department of Botany (Daddy gbogbo bush people), I cannot thank you enough whether for your assistance on the work, kindness, support, encouragement and unequal accommodative attitude in a time like this in my life, honestly your type is rare, all that I say is that you will not miss your reward here in earth and in heaven, in all your endeavors in life you will be successful IJMN. I also thank MrOmodara (Technologist DRPU), MrOgunyemi (Technologist, Fac. of Agric.), the curator MrIbahansebor, the technologogistsMr G. Ademoriyo, Mr Bernard Omomoh and MrBiodunOmole all of department of Botany for their professionalism. ToDr Felix Olorunmola, Mr Francis Adewoyin, Mr AyoOriola, Miss SeunAgbaje and all staff of DRPU who have in one way or the other contributed to the success of this research I say thank you.

I acknowledge Tetfund / URC for grant on Sickle Cell Disease research, thank you more grease to your elbow. I appreciate the effort of Mr Blessing Sanni for the good time he spent in printing and editing of this thesis severally without any sign of boredom.

I acknowledge with profound gratitude the prayers, counsel and support of my Fathers in the Lord Pastor P.K Oyedotun, Prof. and Mrs H.B Olaniyi, Prof. Wilson Erhun and Prof. and Mrs E.O.BAjayiwho have since been my spiritual mentors and always guide me in way forward in life, in my careers and in the course of this research, Daddy I say thank you, your testimony will not turn sour, *a ri yin peooo* IJMN.

This acknowledgement is incomplete and unacceptable if I fail to thank my husband, Olowoori mi Barr. Olusegun Festus Oyedapo (Abidoye Chambers) for his love, unflinching support, prayers, advice, guidance, and counseling and for been everything to me after our

Lord Jesus Christ. I say he is everything, he's my father, my mother, my brother and my sister. Whao!!! I couldn't have married any better person except you meaning that I married right, you know what I love you and will always love you my sweet heart. May your days be long and we shall live to eat the fruits of our labour IJMN.

To my children Ronnie, Richie, Vivie and Verie you are wonderful in prayers, support and advice, I never knew you are wise as young as you are and I can feel your desires, anxiety, endurance, concerns, prayers and commitment in all ramifications in ensuring that this dream comes true. May God be with you, my prayers for you too is that you will be great in life.

To my siblings YinkaTaiwo, OlanrewajuTaiwo, MrsAjibolaAmoo and MrsOlaide Salami, we have been together from kids and you've always supported me with prayers, I understand your feelings and desire for me, may all our dreams come into fruition in life, thank you. To my brothers in-lawMr Femi Oyedapo and Mr Sunday Bello thank you for your prayers.

I wish to appreciate my parent especially my mother Late AlhajaAnifatTaiwo whose desire was always to see me on top and became great in life, thank you for all the legacies you left behind for us.May your soul rest in peace.

Again I return all glory to God the creator of heaven and earth, thanks for the good health, the courage and for sparing my life out of all odds and challenges made it possible to complete the research forever Iwill worship your name. THANK YOU LORD.

TABLE OF CONTENTS

Title	page
Title page	iⅈ
Author	ii
Certification	iv
Dedication	v
Acknowledgement	vi
Table of Contents	ix
List of Plates	xxii
List of Maps	XXV
List of Tables	xxvi
List of Figures	xxix

CHAPTER ONE

1.0 Introduction		1
1.1 Sickle Cell		1
1.2 Justification of the Study		8
1.3 Specific Objectives of the Study	9	

CHAPTER TWO

2.0 Literature Review	10
2.1 Distribution, Epidemiology and Incidence Of Sickle Cell Disease	10
2.2.1 Distribution	10
2.2.2 Epidemiology	11

	2.2.2.1 Global Prevalence of SCD		11
2.3 Causes of SCD			13
2.4 Signs and Symptoms			14
	2.4.1 Anaemia		14
	2.4.2 Episodes of Pain.		14
	2.4.3 Hand-Foot Syndrome.		14
	2.4.4 Frequent Infections.		15
	2.4.5 Vision Problems.		15
	2.4.6 Delayed Growth and Puberty:		15
	2.4.7 Fever:		15
	2.4.8 Leg and Skin Ulcers		16
	2.4.9 Priapism (Unwanted Erections)		16
	2.4.10 Strokes or Brain Injury		16
2.5 Diagnosis			17
2.6 Sickle Cell Crisis			17
	2.6.1 Vaso-Occlusive Crisis		17
	2.6.2 Splenic Sequestration Crisis		18
	2.6.3 Aplastic Crisis		19
	2.6.4 Haemolytic Crisis		19
	2.6.5 Others		19
2.7	Complications		20
	2.7.1 Overwhelming Post- (Auto) Splenectomy Infection (OPSI)		20
	2.7.2 Stroke		20
	2.7.3 Silent Stroke		20
	2.7.4 Cholelithiasis (Gallstones) and Cholecystitis	21	

2.7.5 Avascular Necrosis (Aseptic Bone Necrosis)	21
2.7.6 Decreased Immune Reactions	21
2.7.7 Osteomyelitis (Bacterial Bone Infection)	21
2.7.8 Opioid Tolerance	21
2.7.9 Acute Papillary Necrosis in the Eyes	22
2.7.10 Effect on Pregnancy	22
2.7.11 Chronic Pain	22
2.7.12 Pulmonary Hypertension	22
2.7.13 Chronic Renal Failure Due to Sickle Cell Nephropathy	22
2.8 Pathophysiology	23
2.9 Genetics	24
2.10 Inheritance	28
2.11 Management and Treatment	28
2.11.1 Folic Acid and Penicillin	28
2.11.2 Malaria Chemoprophylaxis	28
2.11.3 Vaso-Occlusive Crisis	29
2.11.4 Acute Chest Crisis	29
2.11.5 Hydroxyurea	29
2.11.6 Transfusion Therapy	30
2.11.7 Bone Marrow Transplants	30
2.12: Khaya species	30
2.12.1 Taxonomic Classification of the Genus Khaya	32
2.12.2 Geographical Distribution of Khaya	33
2.13 Khayasenegalensis A. Juss	
2.13.1: Species Identity	34

	2.13.2 Botanic Description	35
	2.13.3 Ecology and Distribution	36
	2.13.3.1 History of Cultivation	36
	2.13.3.2 Natural Habitat	36
	2.13.3.3 Geographical Distribution	37
	2.13.3.3.1 Native	37
	2.13.3.3.2 Exotic	37
	2.13.3.4 Biophysical Limits	37
	2.13.4 Reproductive Biology	37
	2.13.5 Ethno- Medicinal Uses	38
2.14.1Sp	becies Identity	39
	2.14.2 Description	40
	2.14.3 Location and Distribution	40
	2.14.3.1 Location	40
	2.14.3.2 Distribution	40
	2.14.4.1Ethno- Medicinal Uses	41
2.15 <i>Kha</i>	yaivorensisA.Chev	42
	2.15.1 Species Identity	42
	2.15.2 Botanic Description	43
	2.15.3 Ecology and Distribution	44
	2.15.3.1 history of Cultivation	44
	2.15.3.2 Natural Habitat	44
	2.15.3.3 Geographic Distribution	44
	2.15.3.3.1 Native	44
	2.15.3.3.4 Biophysical Limits	45

2.15.3.3.2.1 Altitude	45
2.13.4.1 Medicinal Uses	45
2.16 Ethno-Medicinal Uses of Khaya	45
2.17 Pharmacological Research on Khaya	46
2.17.1 Antimalarial Activities	46
2.17.1.1 Anti-Malarial Activity of Khaya	46
2.17.1.2 Anti-Malarial Activities of <i>Khayagrandifoliola</i> Stem Bark.	46
2.17.1.3 Anti-Malarial Activity of <i>Khayagrandifoliola</i> Stems Bark	47
2.17.1.4 Grandifolin from <i>Khayagrandifoliola</i> Stems Bark	47
2.17.1.5 In-Vitro Antimalarial Activity of Limonoidsfrom Khaya	
grandifoliolaCDC(Meliaceae).	47
2.17.1.6 Chemotherapeutic Interaction between Khayagrandifoliola	
(Welw), CDC Stem/ Bark Extract and 2 Anti - Malarial Drugs In Mice.	47
2.17.2 Anti-Sickling Activity	48
2.17.2.1 In -Vitro Anti-Sickling Activity of a Re – arranged Limonoid	
Isolated from <i>Khayasenegalensis</i> 48	
2.17.3 Biological Activity	48
2.17.3.1 The Meliaceae Family (Extract from these species have been	
screenedfor other Biological Activities)	48
2.17.4 Effects of Ethanolic Extract of <i>Khayasenegalensis</i> OnSome	
BiochemicalParameters of Rat Kidney.	49
2.17.4.1 Effects Of Khayasenegalensison Some Biochemical Parameters	
in Rats (Adebayo et al., 2003).	49

2.17.4.2 Effects Of Khayagrandifoliola on Some Biochemical Parameter	3
in Rats.	49
2.17.5. Anti-Inflammatory Activity	49
2.17.5.1 Studies on the Anti-Inflammatory and Toxic Effects of the	
Stem Bark of Khayaivorensis (Meliceae) on Rats	
(Agbedahunsiet al., 2004).	49
2.17.5.2 Studies on the Anti-Inflammatory and Toxic Effects of the Stem	
Bark of species of Khaya	50
2.17.6 Effects on Red Blood Cell and Bone Mineral Content	50
2.17.6.1 Effect of Khayagrandifoliola on RBC, and Bone Mineral	
Content in Rat.	50
2.17.7 Antifungal Activity of Limonoids from Khayaivorensis Stem Bark	s 50
2.17.7.1 Chemical Investigation of Di Ethyl Ether Extract of the Stem Ba	rk
of <i>Khayaivorensis</i> 50	
2.17.8 Anti-Microbial Activity	51
2.18 Chemistry of Khaya species	51
2.18.1 <i>Khayasenegalensis</i> 54	ł
2.18.1.1 Limonoids and Triterpenoids from <i>Khayasenegalensis</i> 54	ŀ
2.18.2 Khayagrandifoliola	54
2.18.2.1 Grandifotane A from Khayagrandifoliola	54
2.18.2.2 Limonoids and Flavonoids from Khayagrandifoliola	55
2.18.3 Khayaivorensis	56
2.18.3.1 Ivorenolide A, an Unprecedented Immunosuppressive Macrolide	e from
Khayaivorensis	56
2.19 Phytochemical Constituents of Khaya	57

2.20 Mineral Constituents of <i>Khaya</i>	
2.21 Elemental /Mineral Constituent Analysis	57
2.21.1 Backgroun	57
2.22 Determination of Moisture and Total Solids	60
2.23 Determination of Ash Content	61
CHAPTER THREE	
3.0 Experimentals	63
3.1 Materials and Methods	63
3.1.1 Materials	63
3.1.1.1 Solvents	63
3.1.1.2 Reagents	63
3.1.1.3 Salts and Pellets	63
3.1.1.4 Equipment's and Apparatus	63
3.1.1.5 Spray Reagents	64
3.1.2 Plant Materials	64
3.1.2.1 Identification and Authentication	64
3.1.2.2 Collection of Samples	65
3.2. Plant Processing	66
3.2.1. The Leaves	66
3.3 Extraction Procedure	66
3.3.1 Cold Extraction	66
3.3.1.2 Hot Extraction	66
3.4 Preparations for Bioassay	67
3.4.1 Preparation of Extract for Bioassay	67

3.4.1.2.2 Vanillic Acid Preparation	67
3.4.1.3 Sodium Meta-Bisulphite Preparation	67
3.4.1.4 Phosphate Buffered Saline Solution Preparation	68
3.4.1.5 Buffered Formalin Solution (5%)	68
3.5 Botanical Assay Preparation	
3.5.1 Preparation of Samples for Botanical Assay	68
3.6 Anti-Sickling Bioassay	68
3.6.1 Collection of Blood Samples	68
3.6.2 Inhibitory Anti-sickling Test of Extract	69
3.6.3 Reversal Anti-sickling Test of the Extract	69
3. 6. 4 Calculation of Percentage Sickling	70
3.7 Botanical / Biological Assay	71
3.7.1 Peeling	71
3.7.2 Clearing	71
3.7.3 Softening	71
3.7.4 Sectioning	71
3.7.5 Maceration	72
3.7.6 Staining	72
3.7.7 Microscopy	73
3.8 Proximate Analysis	73
3.8.1 Determination of Moisture Content	73
3.8.2 Determination of Ash Content	74
3.8.3 Determination of Total Crude Fibre	74
3.8.4 Determination of Ether Extract (% Fat, % Oil, oir % Lipid)	75
3.8.5 Determination of Total Crude Protein	76

3.8.5.1 Digestion	76
3.8.5.2 Distillation	76
3.8.5.3 Titration	77
3.9 Elemental Analysis Procedure	78
3.9.1 Determination of Digestion for the Determination of Minerals	
(Dry Ashing Method).	78
3.10 Phytochemical Analysis	78
3.10.1 Chromatographic Technique (Thin Layer Chromatograhy)	78
CHAPTER FOUR	
4.0 Results and Discussion	79
4.1 Morphological Study	79
4.1.1 Khayasenegalensis (Plate 7)	84
4.1.2 <i>Khayagrandifoliola</i> (Plate 8)	85
4.1.3 Khayaivorensis (Plate 9)	86
4.1.4 Macro-Morphological Study	87
4.2 Micro-Morphological Study	90
4.2.1 Leaf Anatomy	90
4.2.1.1 Leaf Venation	91
4.2.1.1 Leaf Venation	93
4.2.1.2 Leaf Epidermal Studies	94
4.2.1.3 Leaf Petiole Anatomy	98
4.2.1.4 Leaf Transverse Section	104
4.2.1.4 Transverse Section of Leaf	107
4.2.2 Stem Anatomy	108

4.2	2.2.1 Transverse Section (TS)	115
4.2	2.2.2 Tangetial Longitudinal Section (TLS)	115
4.2	2.2.3 Radial Longitudinal Section (RLS)	116
4.2	2.3 Root Anatomy of <i>Khaya</i> species	117
4.2	2.3.1 Transverse Section (TS)	121
4.2	2.3.2 Tangential Longitudinal Section (TLS)	121
4.2	2.3.3 Radial Longitudinal Section (RLS)	121
4.2	2.4 Bark Anatomy of Khaya species	122
4.2	2.4.1.1 Longitudinal Section of Stem Bark	123
4.2	2.4.1.2 Longitudinal Section of Root Bark	124
4.2	2.4.1 Longitudinal Section (L.S)	128
4.2	2.4.1.1 Longitudinal Section of Stem Bark	128
4.2	2.4.1.2 Longitudinal Section of Root Bark	129
4.2	2.4.2.1 Transverse Section of Stem Bark	130
4.2	2.4.2.2 Transverse Section of Root Bark	131
4.2	2.5 Macerates	135
4.2	2.5.1 Stem Wood Macerates	135
4.2	2.5.2 Root Wood Macerates	136
4.2	2.5.3 Bark Macerates	137
4.2	2.5.1 Stem Wood Macerates	141
4.2	2.5.2 Root Wood Macerates	142
4.2	2.5.3 Bark Macerates	143
3 Elemental	/ Mineral Analysis	144
4.	3.1 Relevance of Elemental / Mineral Analysis of Khaya species	
int	the Management of SCD	145

4.3

4.4. Proximate Analysis	152	
4.4.1 Relevance of Proximate Analysis of Khaya species in the		
Management of SCD	153	
4.5 Pharmacological Assay		157
4.5.1 Anti-Sickling Activities		157
4.5.1.1. Inhibitory Assay		162
4.5.1.2 Reversal Assay		164
4.6: Thin Layer Chromatography Fingerprints		171
4.6.1 Thin Layer Chromatography (TLC) Fingerprints of the		
Three Khaya species	173	
5.0 Conclusion		174
References		205
Appendix		254

 $\langle \nabla \rangle$

LIST OF PLATES

Plate 1: Human Blood Smear; Source: From Wikipedia, the free encyclop	edia	1	
Plate 2: Normal RBC and the Sickled RBC	3		
Plate 3: Vaso-occlusive obstruction of sickled RBC		5	
Plate 4: Habit of Khayasenegalensis	34		
Plate 5: Habit of <i>Khayagrandifoliola</i>	39		
Plate 6: Habit of Khayaivorensis	42		
Plate 7: Morphological Study of Khayasenegalensis		83	
Plate 8: Morphological Study of Khayagrandifoliola			92
Plate 9: Morphological Study of Khayaivorensis			96
Plate10: Morphological Study of Khaya Canopy			97
Plate11: Morphological Study of Khaya species leaf			101
Plate12: Morphological Study of Khaya species			102
Plate13: Morphological Study of Khayaspecies Bole/Girth		105	
Plate 14: Venation Pattern of <i>Khaya</i> species			106
Plate 15: Venation Pattern of Khaya species ShowingMultiple Areoles and	d Areo	les	
Shape 112			
Plate 16: Adaxial Features of <i>Khaya</i> species			113
Plate 17: Abaxial Features of <i>Khaya</i> species			114
Plates 18 & 19: Summary of Petiole Anatomy in Transverse Section of Kl	<i>haya</i> sp	oecies	
Legend			118
Plates 18 & 19: Summary of Petiole Anatomy in Transverse Section of			
Khaya species			119
Plates 20 and 21: Summary of Leaf Anatomy in Transverse Section of Kha	<i>iya</i> spec	cies.	120

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng

Plates 22, 23 and 24:	Comparative features exhibited in Transverse, Tan	gential	127
Longitudinal and Ra	dial Longitudinal Sections of Khayaspecies Stem.	122	
Plates 25, 26 and 27:	Comparative features exhibited in transverse, tange	tial longitudinal	
and radial longitudin	al Sections of <i>Khaya</i> species Root. 138		
Plates 28 and 29: Sur	mmary of features exhibited by Longitudinal Section	n of <i>Khaya</i>	
species Stem Bark		138	
Plates 30 and 31: Co	mparative features exhibited by Transverse Section	of Khaya	
species Stem and Ro	ot Bark	145	
Plates 32, 33 and 34:	Features Exhibited by Stem, Root Wood and Bark	Macerates	
of the Khaya species		152	
Plate 35: Thin layer of	chromatography (tlc) fingerprints of the three Khaya	ı	
species	172		
OBAH			

LIST OF FIGURES

Fig 1a: Genetically Result of Parent Carrier of Sickle Cell	3
Figure 1b: Distribution of the Sickle-Cell Trait Shown in Pink and Purple	25
Figure 2: Historical Distribution of Malaria (No Longer Endemic in Europe) Show	vn
in green	25
Figure 3: Modern Distribution of Malaria	25
BHHMMMOLOW	

LIST OF MAPS

Map 1: Distribution of the Sickle-Cell Trait Shown in Pink and Purple	25
Map 2: Historical Distribution of Malaria (No Longer Endemic in Europe) Shown in	
Green	25
Map 3: Modern Distribution of Malaria	25
HEMIANOLOWING	

LIST OF TABLES

Table 1: A list of <i>Khaya</i> species used for the study a	nd their locations	65
Table 2: Comparative Summary of Vegetative Macr	o morphological Features	
of Three Khaya species	80	
Table 3: Comparative architectural features exhibite	d by the leaves of the <i>Khaya</i>	
species studied	91	
Table 4: Summary of the features exhibited by the A	Adaxial surfaces of Khayaspecies	
leaves after leaf peeling	94	
Table 5: Summary of the features exhibited by the A	Abaxial surfaces of Khayaspecies	
leaves after leaf peeling	95	
Table 6: Summary of Petiole anatomy of Khaya spe	cies	99
Table 7: Leaf anatomy of <i>Khaya</i> species in transver	se section	104
Table 8: Summary of the features exhibited by the tr	ransverse section of Khayaspecies	
Stem 110		
Table 9: Summary of comparative features exhibition	ted by Tangential Longitudinal	
Section of stem (TLS OF STEM) of Khaya species	111	
Table 10: Summary of features exhibited by Radial	Longitudinal Section of Khaya	
species Stem	111	
Table 11: Summary of Comparative Features Exhibit	ited by Tangential Longitudinal	
Section of <i>Khaya</i> species Root		117
Table 12: Different Features Exhibited by RLS ROO	OT of <i>Khaya</i> species 117	
Table 13: Comparative summary of features exhibit	ed by Longitudinal Section of	
Khaya species Stem Bark	123	
Table 14: Comparative summary of features exhibit	ed by Longitudinal Section of	
Khaya species Root Bark	124	

Table15: Summary of features exhibited by Transverse Section of Khaya species Section	tem
Bark 130	
Table 16: Summary of features exhibited by Transverse Section of Khaya species R	loot
Bark 131	
Table 17: Comparative Features Exhibited by Stem Wood Maceratesof the Khaya	
species 135	
Table 18: Comparative Features Exhibited by Root Wood Maceratesof the Khaya	
species 136	
Table 19: Comparative Features Exhibited by Bark Macerates of the Khaya	
species 137	
Table 20: Result of Elemental Analysis of the stem bark and leaf of the three	
Khaya species	44
Table 21: Result of Proximate Composition of the stem bark and leaf of the three	
<i>Khaya</i> species 152	
Table 22: Inhibition at 4mg/ml	158
Table 23: Inhibition at 2mg/ml	159
Table 24: Inhibition at 1mg/ml	160
	100
Table 25: Inhibition at 0.5mg/ml	161
Table 25: Inhibition at 0.5mg/mlTable 26: Reversal at 4mg/ml	
	161
Table 26: Reversal at 4mg/ml	161 165
Table 26: Reversal at 4mg/ml Table 27: Reversal at 2mg/ml	161 165 166
Table 26: Reversal at 4mg/mlTable 27: Reversal at 2mg/mlTable 28: Reversal at 1mg/ml	161 165 166 167 168

ABSTRACT

The study examined the macro and micro morphology of *Khayasenegalensis*(K.S)A.Juss (Welw), *Khayagrandifoliola*(K.G)C.Dcand*Khayaivorensis*(K.I)A.Chevof the family Meliaceae, identified any morphological differences in the three species, evaluated some pharmacognostic parameters for pharmacopoeial standardization of the three plants and compared their anti-sickling activities. This was with a view to providing information on the different species of *Khaya* and their anti-sickling potential.

The leaves and the stem bark of K. *senegalensis*A.Juss (Welw), *K. grandifoliola*C.Dc, and *K. ivorensis*A.Chev were collected, authenticated, processed and extracted separately using three different solvents:absolute ethanol, water and petroleum spirit. The extracts were concentrated *in vacuo*, freeze dried and evaluated separately for their anti-sickling inhibitory and reversal, using sodium meta-bisulphite as reducing agent, p-hydroxy benzoic acid and vanillic acid as positive controls for reversal and inhibitory activities respectively while 5% v/v Tween 80 was the negative control. The extract with the highest anti- sickling properties was subjected to thin layer chromatographic (TLC) finger printing. Comprehensive anatomical examinations, of various sections of the leaf, stem, root and stem bark were carried out using standard methods. Photomicrographs of the slides were made. Proximate analysis was carried out for the three species using simple analytical procedures, moisture content, ash values, crude fibre, total crude proteinas well as elemental analysis.

The macroscopic and microscopic study of the three species revealed that there were diagnostic features in the leaf, stem, roots and bark that can be used for distinguishing among the three*Khaya*species. The result of the proximate and elemental analysis showed that the leaves

and stem bark contained necessary rich nutrients and essential minerals. The anti-sickling study of inhibitory and reversal activities showed that both leaf and stem bark of *Khaya*species studied possessed ability to inhibit the sickling of red blood cells with KI stem bark giving highest inhibitory values of 80.71% and 71.06% for hot ethanolicSoxhlet and cold ethanolicextractions respectively while its leaf gave highest reversal activities of 74.97% and 69.97% for hot ethanolicSoxhlet and cold ethanolic extractions respectively. The inhibitory and reversal of sickled red blood cells was at higher percentages than the standard drug vanillic acid of 58.20% and para-hydroxyl benzoic acid of 46.27%. The activities are dose dependent with highest activities at 4mg/ml. The activity of the petroleum spirit extracts was very low.

The study concluded that the *Khaya* species can be developed for herbal drugs in the management of sickle cell disease since they possessed antisickling activities.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Sickle cell disorder (SCD), is a haemoglobinopatic disease aggravated by depletion of oxygen resulting in anaemia, occlusion of blood vessels by misshapen cells, and various associated clinical consequences, including death (Platts *et al.*, 1994). It is a pathological disease of blood. Blood is a bodily fluid in animals that delivers necessary substances such as nutrients and oxygen to the cells and transports metabolic waste products away from the same cells. Blood accounts for 7% of the human body weight (Alberts and Bruce, 2012,Elert *et al.*, 2012) with an average density of approximately 1060 kg/m³, very close to pure water's density of 1000 kg/m³ (Shmukler and Michael, 2004). The average adult has a blood volume of roughly 5 liters (1.3 gal) (Elert *et al.*, 2012) which are composed of plasma and several kinds of cells. These blood cells (which are also called corpuscles or "formed elements") consist of erythrocytes (red blood cells, RBCs), leukocytes (white blood cells), and thrombocytes (platelets) (Plate 1). By volume, the red blood cells constitute about 45% of whole blood, the plasma about 54.3%, and white cells about 0.7%. Blood pH is regulated to stay within the narrow range of 7.35 to 7.45, making it slightly basic (Waugh *et al.*, 2007).

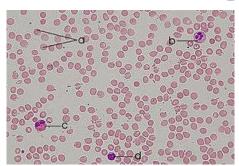


Plate 1: Human Blood Smear; Source: From Wikipedia, the free encyclopedia a – erythrocytes; b – neutrophil; c – eosinophil; d – lymphocyte.

Haemoglobin genotypes and blood groups are all inherited blood characters. The inherited disorders of haemoglobin are the most common gene disorders with 7% of the world's population being carriers (Weatheral andClegg 2001). It is on record that about 300,000 children are born with sickle cell disease (SCD) worldwide every year (Okpala *et al.*, 2002). Sickle cell disorders are found very frequently in the Afro-Caribbean populations and sporadically throughout the Mediterranean region, India and the Middle East (Weatheral *et al.*, 2001). These disorders include the heterozygous state for haemoglobin S or the sickle cell trait (AS), the homozygous state for HbS or sickle cell anaemia (SS) and the compound heterozygous state for HbS together with haemoglobin C, D, E, α -thalassemia or other structural variants.SCD is caused by mutation of the beta-globin gene. Haemoglobin S differs from haemoglobin A by the substitution of valine for glutamic acid at position 6 in the β - chain1, (Okpala *et al.*, 2002) producing haemoglobin, designated haemoglobin S that has less solubility than does of normal haemoglobin (A).

Sickle cell anaemia is hereditary. It is a disease passed down through families in which red blood cells form an abnormal crescent shape (Plate 2). (Red blood cells are normally disc shape

however sickle cell is crescent in shape Plate2) when one gene haemoglobin S, is found in association with normal gene haemoglobin A, results in the formation of haemoglobin AS. This type of red cells contains approximately 40 per cent of the abnormal haemoglobin (HbS) and 60 per cent of the normal haemoglobin (HbA), an essentially harmless state that is designated as sickle cell trait or a carrier (HbAS) are abnormal i.e. another (HbS). But if both genes are inherited, then the sickle cell disease may develop (HbSS) (Fig.1). The most common haemoglobin that interacts with sickle haemoglobin (HbS) is haemoglobin (HbC), and the β -thalassemia (beta-thalassemia) mutation also interacts with the sickle gene by restricting the formation of normal haemoglobin (Platts *et al.*, 1994).

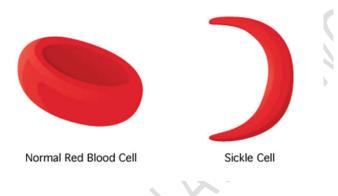
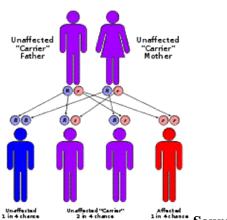



Plate 2: The Normal RBC and the Sickled RBC.

Source: http://www.nhlbi.nih.gov

Source: http://en.wikipedia.org/wiki/File

Fig 1a: Genetical result of parent carrier of sickle cell

A single dose of the sickle gene provides protection against malaria. Since malaria was a major cause of death in Africa, persons who carried the sickle gene had a survival advantage over those who did not (Wellem *et al.*, 2009). It is also a common disease in Nigeria. Some of its signs and symptoms as stated by Chrouser *et al.*, 2011 which includes anaemia (Weatherall and Clegg, 2001), pains (Geller and O'Connor, 2008), hands and foot syndrome, frequent infections (Pearson, 1977), vision problems (Elagouz *et al.*, 2010), delayed growth and puberty, fever accompanied with paleness, fatigues, yellowing of eyes and skin jaundice,