

GEOSPATIAL MODELLING OF GROUNDWATER QUALITY IN JOS SOUTHLOCAL GOVERNMENT AREA OF PLATEAU STATE, NIGERIA

BY

Ezekiel Onoshi EGUAROJE

(SCP11/12/H/1329)

B.Sc. (Geology/Arch) Ibadan, M. Sc. (Environmental Control and Management) Ife

A THESIS SUBMITTED TO THEINSTITUTE OF ECOLOGY AND ENVIRONMENTAL STUDIES, OBAFEMIAWOLOWO UNIVERSITY, ILE-IFE, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREEOF DOCTOR OF PHILOSOPHY (Ph.D.) IN ECOLOGY AND ENVIRONMENTAL SCIENCE

2016

CERTIFICATION

This is to certify that this research work was carried out by EGUAROJEOnoshi Ezekiel (SCP11/12/H/1329) in partial fulfilment of the requirements for the award of Doctor of Philosophy (Ph.D.) Degree in Ecology and Environmental Science of the Obafemi Awolowo University, under our supervision.

Prof. E.I.Ofoezie		17
Supervisor	Signature	Date
Prof. M.O. Olorunfemi		
Co-Supervisor Department of Geology	Signature	Date
Prof. O.O. Awotoye		
Director Institute of Ecology and Environmental Studies	Signature	Date

DEDICATION

I dedicate this research work to God Almighty (The Source and Provider of Living Water) and to my Lovely Children. I also dedicate this research work to all those who are working tirelessly to improve and provide quality and safe water to Humanity.

ACKNOWLEDGEMENTS

My profound gratitude goes to God Almighty for the gift of life, wisdom and means to carry out this research. First among the invaluable contributors to this research work are my main and cosupervisors, Professors I.E. Ofoezie and M.O. Olorunfemi of the Institute of Ecology and Environmental Studies and Department of Geology respectively. Examiners who painstakingly read the work and effected necessary corrections during my qualifying examination which include: the Chief Examiner and Director of the Institute, Prof. O.O. Awotoye, Prof. O.A. Ogunfowokan, Prof. O.O. Ogunkoya and Dr.A.A. Adediji.

My colleagues at the Advanced Space Application Laboratory, Southwest, were very supportive. Primal among them are Ugo Henry Okeke, who participated actively at the level of field data collection, transportation to the laboratory and the GIS analysis. Thank you for your immense contribution. I'm also very grateful to DimejiPopoola, Mr.Ikpe Emmanuel, EgwuoguChibuzor, Mr.AduwoA.I., BoluwatifeAdeniyi,Taiwo and Michael who were also very active in the field and laboratory analyses.

I remain grateful to the Zoology and Soil Science and Land Resources Management Departments of ObafemiAwolowo University, Ile-Ife, Centre for Energy Research and Development and University of Ibadan Multipurpose Laboratories for allowing me the use of their Laboratory for the water analysis. I appreciate the various communities, houses and organizations where I sourced all my primary and secondary data. I remain grateful and loyal to my Agency, National Space Research and Development Agency and particularly the DG, Professor S.O. Mohammed for his approval and support throughout the period of this research. I am grateful to both the academic and non-academic staff of the Institute of Ecology and Environmental Studies for their support.

Finally, I thank my wife and children for their prayers, moral and financial support.

TABLE OF CONTENTS

Title P				
Certifi	i ication			
CCITIII	ii			
Dedica				
	iii			
Ackno	owledgements			
	iv			
Table	of Contents			
	V			
List of				
_	xiii			
List of	Figures			
	XV			
List of	Plates			
List of	xxi Appendix	xxi		
	Abbreviations and Acronyms Used	XXI		
LISCOI	xxvii			
Abstra	XXVII Abstract			
	xxxv			
CHAPT	TER ONE: INTRODUCTION			
1.1	Background to the Study			
	1			
1.2	Statement of Research Problem			
	3			
1.3	Aim and Objectives of the Study			
	5			
1.4	Expected Contribution to Knowledge			
	5			

CHAPTER TWO: LITERATURE REVIEW

2.1	Water
	6
2.2	Hydrologic Cycle
	8
2.3	The Global Water Budget
	11
2.4	Sources of Water
	13
	2.4.1 Surface Water
	13
	2.4.2 Groundwater and Sources
	15
2.5	Origin of Groundwater
	17
2.6	Geological Formations and Aquifers
	17
	2.6.1 Aquifer
	17
	2.6.1.1 Unconfined Aquifer
	18
2.7	Groundwater Hydro-geochemistry
	20
2.8	Sources of Groundwater Pollution
	20

2.9	Heavy	Metal Pollutant in Groundwater and their Health and Environmental Impact
	23	
	2.9.1	Lead (Pb) and Cadmium (Cd) and their Impact on Human Health
	23	
	2.9.2	Molybdenum (Mo) and Its Impact on Human Health
	25	
	2.9.3	Nickel (Ni) and Chromium (Cr) and their Impact on Human Health
	26	\Q\2\'
	2.9.4	Arsenic
	27	
		2.9.4.1 Toxicity of Arsenic
		28
	2.9.5	Other Metals of Concern
	29	
2.10	Curre	nt Regulations and Surveillance of Drinking Water
	30	
	2.10.1	Microbiological Aspects
	30	
	2.10.2	World Health Organization
	30	
	2.10.3	National Agency for Food and Drug Administration and Control (NAFDAC)
	33	
2.11	Water	Quality Index (WQI)
	35	

	2.11.1 What Is WQI?	
	35	
	2.11.2 Algorithms (Models) for Calculating WQI	
	36	
	2.11.2.1 Weighted Arithmetic Mean	
	36	
2.12	Remotely Sensed Data and Groundwater Modeling	
	37	
2.13	Use of Geographical Information System (GIS)	
	40	
2.14	Review of Some Global Water Quality Regulatory Bodies	
	41	
CHAP	PTER THREE:MATERIALS AND METHODS	
3.1	Study Area 45	
	3.2.1 Historical Background	45
	3.2.2 Climate	49
	3.2.3 Physical Setting	49
	3.2.4 General Geology of the Younger Granites 49	
	3.2.5 Soil and Vegetation 52	
	3.2.6 Population 54	
	3.2.7 Settlement/Land Use Type 54	

3.3	Methodology 56	
	3.3.1 Data Requirement 56	
3.4	Criteria for the Selection of Satellite Imagery	59
3.5	Software Requirement	60
3.6	Selection of Stations 60	
3.7	Sample Collection Interval and Duration	60
3.8	Sample Collection and Preservation 64	
3.9	Field Measurements 64	
3.10	Instrument Calibration	67
3.11	Elemental Test and Analysis 67	
3.12	Quality Assurance and Quality Control Measures 71	
3.13	Determination of Solids	71
3.14	Turbidity and Colour 72	
3.15	Total Carbon (IV) Oxide	72
3.16	Nitrate and Nitrite 74	
3.17	Determination of Total Hardness 74	
3.18	Sulphate 75	
3.19	Determination of Phosphorus 75	
3.20	Chloride 76	
3.21	Determination of Metals by Atomic Absorption Spectrometry (AAS)	78

	3.21.1	Determination of Analytical Wavelength (nm) and Detection Limit (NgIL)	78
	3.21.2 78	Flame type and Condition	
	3.21.3 82	Bandwidth, Filter Factor and Lamp Current	
	3.21.4	Sensitivity and Detection Limit	84
3.22	Selection	on and Delineation of Study Are	84
3.23	Satellite 84	e Image Data Preparation	
3.24	Digital 85	Image Classification	
3.25	Geo-da	tabase Design and Development	87
	3.25.1 87	The Physical Design	
	3.25.2	The Conceptual design	89
	3.25.3 89	The Logical design	
	3.25.4 93	The Physical design	
3.26	Spatial 93	Modeling and Surface Interpolation	
3.27	Spatial	Analysis	94
3.28	DEM ar 94	nd Terrain Analysis	
3.29	Water	Quality Index Calculation	96
	3.29.1	WQI Development Process	

3.29.2 WQI Interpretation

97

3.30 Statistical Analysis of Data

97

CHAPTER FOUR: RESULTS

4.1	Data I	Presentation and Analysis	
	100		
4.2	Land	Use/Land Cover Distribution	
	100		
4.3	Terrai	n Characteristics	
	103		
	4.3.1	Elevation and Slope	
	103		
4.4	Physic	cal-chemical Parameter of Water	
	107		
	4.4.1	Physical Parameters of Water Quality	
	107		
		4.4.1.1 Water Depth	
		107	
		4.4.1.2 Water Temperature	
		107	
		4.4.1.3 Total Solid 107	
		4.4.1.4 Total Suspended solid 115	
		4.4.1.5 Turbidity 115	
		4.4.1.6 Apparent Colour	115
		4.4.1.7 True Colour 115	
	4.4.2	Chemical parameter of Water Quality	121

	4.4.2.1 Conductivity 121	
	4.4.2.2 Hydrogen Ion Concentration (pH) 121	
	4.4.2.3 Total Dissolved Solid (TDS) 121	
	4.4.2.4 Alkalinity 129	
	4.4.2.5 Acidity 129	•
	4.4.2.6 Hardness 129	
4.4.3 133	Heavy Metal Parameters of Water Quality	
	4.4.3.1 Copper 133	
	4.4.3.2 Cadmium 133	
	4.4.3.3 Manganese 133	
	4.4.3.4 Lead 139	
	4.4.3.5 Zinc 139	
20	4.4.3.6 Nickel 139	
	4.4.3.7 Iron 139	
	4.4.3.8 Cobalt 145	
	4.4.3.9 Chromium 145	
4.4.4	Major Ion Parameter of Water	145
	4.4.4.1 Sodium	145

	4.4.4.2 Potassium 145	
	4.4.4.3 Calcium	152
	4.4.4.4 Magnesium 152	
	4.4.4.5 Chloride	152
	4.4.4.6 Sulphate 152	
	4.4.4.7 Nitrate 160	
	4.4.4.8 Phosphate 160	
4.4.5 160	Oxygen parameter of Water	
	4.4.5.1 Dissolved Oxygen 160	
	4.4.5.2 Biochemical Oxygen Demand	168
	4.4.5.3 Organic Matter	168
	4.4.5.4 Chemical Oxygen Demand 168	
	4.4.5.5 Total Coliform Count (Coliform)	168
The Re	lationship among the Physio-Chemical Parameters	
4.5.1 174	The Relationship among the Physical Parameters of Water	
4.5.2	The Relationship among the Heavy Metals Parameters of Water	174
4.5.3	The Relationship among the Major Ion Parameters of Water	174
4.5.4 174	The Relationship among the Oxygen Parameters of Water	
4.5.5 181	Order of Dominance of Major Ions	
4.5.6 181	Water Quality Index	

4.5

CHAPTER FIVE: DISCUSSION

5.1	Physico-Chemical Characteristics 197		
5.2	Microbiological Characterization 208		
5.3	Heavy Metals Concentration in Water	210	
5.4	Seasonal Variation in the Investigated Parameters 211		
	5.4.1 Physical Parameters 213		
	5.4.2 Chemical Parameters 214		
	5.4.3 Major Ions (Cations and Anions)	214	
	5.4.4 Heavy Metals 214		
5.5	Water Quality Index 216		
5.6	Land Use, Geology and the Water Quality of the Study Area	227	
СНАРТ	ER SIX: SUMMARY, CONCLUSIONS AND RECOMMENDATION		
6.1	Summary 230		
6.2	Conclusion 232		
6.3	Recommendations 232		
REFERI	ENCES	234	
APPEN	APPENDICES 2		

LIST OF TABLE

Table	Page	Title	
2.1		WHO Microbiological Standards	32
2.2		NAFDAC Microbiological Standards for Potable Water	34
3.1	57	Characteristics of Secondary Data	
3.2		Characteristics of Satellite Image Data	58
3.3		Software used and their Characteristics	61
3.4	63	Sample Collection Intervals	
3.5		Sample Preservation and Holding Period	65
3.6	70	Selected Elements of Interest Tested in this Study	
3.7		Summary of Methods for the Physical Analysis of Water Quality Parameters	73
3.8		Summary of Methods for the Major Ions Analysis of Water	
		Quality Parameters 77	
3.9	80	The Elements Tested Using the AAS	
3.10		Types of Flame and their Applications	81
3.11	- 1	Tested Element and the Characteristics of Flame Type Used	83
3.12		Weighting Factors for Different Participating Parameter	99
3.13	99	Water Quality Rating	
4.1		Class Statistics of the Different Land Use Land Cover themes	102
4.2		Descriptive Statistics of Overall Physical Parameters of Groundwater in Jos	
		South LGA 108	
4.3		Seasonal Variations of Physical Parameters of Groundwater in	

	Jos South LGA	109
4.4	Descriptive Statistics of Overall Chemical Parameters of Groundwater	
	in Jos South LGA 122	
4.4b	Seasonal Variations of Chemical Parameters of Groundwater in	
	Jos South LGA	123
4.5	The Descriptive Statistics of Heavy Metals of Groundwater in	
	Jos South LGA	134
4.5b	Seasonal Statistics of Heavy Metals of Groundwater in Jos South LGA	135
4.6	Descriptive Statistics of Major Ions of the Groundwater in Jos South LGA	148
4.6b	ANOVA Statistics of Seasonal Variations of Major Ions of Groundwater in	
	Jos South LGA 149	
4.7	Descriptive Statistics of Overall Oxygen Parameters of Water in	
	Jos South LGA	164
4.8	Percentage Concentration of Heavy Metals in Groundwater Sample in	
	Jos South LGA	184
4. 9	Water Quality Index of Different Seasons 185-190	
4.10	Sample Location (Settlement) and WQI with their Associated Land use Type	192-195
5.1	Water Quality of Jos South LGA compared with set National and	
	International Guide levels and Standards for Drinking Water	197-199
5.2	Water Quality Index of Sampled Well	217-219

LIST OF FIGURES

Figure	Page	Title	
2.1		Schematic Representation of the Hydrological Cycle	10
2.2	12	Distribution of Earth's Water	
2.3	14	Sources of Water	
2.4		A Schematic Cross-section Showing the Typical Distribution of Subsurface	
		Waters in a simple "Unconfined" Aquifer Setting	16
2.5	19	Schematic Cross-sections of Aquifer Types	
2.6		Conceptual Diagram of the Hydrogeochemical Cycle Incorporating the	
		Processes Affecting the Transport and Reactions Involving Major Ions	21
2.7	22	Source of Groundwater Pollution	
3.1		Map of Nigeria Showing Plateau State	46
3.2		Map of Plateau State Showing Jos South Local Government Area	47
3.3		Map of Jos South Local Government Area - The Study Area	48
3.4	50	Geology of the Study Area	
3.5		Younger Granites Complexes of Nigeria. (After Obaje, 2009)	51
3.6	53	Soil Map of the Study Area	
3.7		Grid Division and Sample Station Distribution	62
3.8	69	Categories of Elements in Water	
3.9		Flowchart Showing Geo-spatial Data Processing and Analysis	86
3.10	88	GIS Database Design	

3.11		Residential Groundwater EMR Model	90
3.12	91	Vector Model of Participatory Feature Class	
3.13		The Logical Model for this Study	92
3.14	95	3D Model Method Flowchart	
4.1		Classified Land use Land cover Map of Jos South LGA	101
4.2		Distribution of Land Use Land Cover in the Study Area	104
4.3	105	Digital Elevation Model of the Study Area	
4.4	106	3D Visualization Map	
4.5		Elevation Profile Graph	106
4.6	110	Mean Seasonal Variation Pattern of Water Depth	
4.7	111	Seasonal Distribution and Variation of Water Depth	
4.8		Mean Seasonal Variation of Groundwater Temperature in Jos South LGA	112
4.9	113	Seasonal Variation and Distribution of Water Temperature in Jos South LG	
4.10		Mean Seasonal Variation of Total Solid (TS) of Groundwater in	
		Jos South LGA	114
4.11		Mean Seasonal Variation Pattern of TSS in Groundwater of Jos South LGA	116
4.12		Mean Seasonal Variation of Turbidity in Groundwater of Jos South LGA	117
4.13		Seasonal Distribution and Variation of Turbidity in Groundwater of	
		Jos South LGA	118
4.14		Mean Seasonal Variation Pattern of Apparent Colour of Groundwater in	
		Jos South LGA	119
4.15		Mean Seasonal Variation Pattern of True Colour of Groundwater in	
		Jos South LGA	120

	Mean Seasonal Variation of Conductivity in Groundwater of Jos South LGA	124
	Seasonal Distribution and Variation of Groundwater Conductivity	
125		
126	Mean Seasonal Variation of pH in Groundwater of Jos South LGA	
	Spatial Distribution and Seasonal Variation ofpH	127
	Mean Seasonal Variation of TDS in Groundwater of Jos South LGA	128
	Mean Seasonal Variation Pattern of Alkalinity in Groundwater of	
	Jos South LGA	130
	Mean Seasonal Variation Pattern of Acidity in Groundwater of	
	Jos South LGA	131
	Mean Seasonal Variation of Hardness Pattern in Groundwater of	
	Jos South LGA	132
	Mean Seasonal Variations of Copper in Groundwater of Jos South LGA	136
	Mean Seasonal Variations of Cadmiumin Groundwater of Jos South LGA	137
	Mean Seasonal Variation of Manganese in Groundwater of Jos South LGA	138
	Mean Seasonal Variation of Lead Pattern in Groundwater of Jos South LGA	140
	Seasonal Distribution and Variation of Lead	
141		
	Mean Seasonal Variation of Zinc Pattern in Groundwater of Jos South LGA	142
1	Mean Seasonal Variation of Nickel Pattern in Groundwater of Jos South LGA	143
	Mean Seasonal Variation of Iron Pattern in Groundwater of Jos South LGA	144
	Mean Seasonal Variation of Cobalt Pattern in Groundwater of	
	Jos South LGA	146
	Mean SeasonalVariation of Chromium Pattern in Groundwater of	
	Jos South LGA	147
	Mean Seasonal Variation of Sodium Pattern in Groundwater of	
	Jos South LGA	150
	126	Seasonal Distribution and Variation of Groundwater Conductivity 125 Mean Seasonal Variation of pH in Groundwater of Jos South LGA Spatial Distribution and Seasonal Variation ofpH Mean Seasonal Variation Pattern of Alkalinity in Groundwater of Jos South LGA Mean Seasonal Variation Pattern of Acidity in Groundwater of Jos South LGA Mean Seasonal Variation of Hardness Pattern in Groundwater of Jos South LGA Mean Seasonal Variations of Copper in Groundwater of Jos South LGA Mean Seasonal Variations of Cadmiumin Groundwater of Jos South LGA Mean Seasonal Variation of Manganese in Groundwater of Jos South LGA Mean Seasonal Variation of Lead Pattern in Groundwater of Jos South LGA Seasonal Distribution and Variation of Lead 141 Mean Seasonal Variation of Sinc Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Iron Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Iron Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA Mean Seasonal Variation of Cobalt Pattern in Groundwater of Jos South LGA

4.36	Mean Seasonal Variation of Potassium Pattern in Groundwater of	
	Jos South LGA	151
4.37	Mean Seasonal Variation of Calcium Pattern in Groundwater of	
	Jos South LGA	153
4.38	Spatial Distribution and Seasonal Variation of Calcium	154
4.39	Mean Seasonal Variation of Magnesium Pattern in Groundwater of	
	Jos South LGA	155
4.40	Spatial Distribution and Seasonal Variation of Magnesium 156	
4.41	Mean Seasonal Variation of Chloride Pattern in Groundwater of	
	Jos South LGA	157
4.42	Mean Seasonal Variation of Sulphate Pattern in Groundwater of	
	Jos South LGA	158
4.43	Spatial Distribution and Seasonal Variation of Sulphate	159
4.44	Mean Seasonal Variation of Nitrate Pattern in Groundwater of	
	Jos South LGA	161
4.45	Spatial Distribution and Seasonal Variation of Nitrate	162
4.46	Mean Seasonal Variation of Phosphate Pattern in Groundwater of	
	Jos South LGA	163
4.47	Mean Seasonal Variation of DO Pattern in Groundwater of Jos South LGA	165
4.48	Spatial Distribution and Seasonal Variation of Dissolved Oxygen in	
	Groundwater 166	
4.49	Mean Seasonal Variation of DO Saturation Pattern in Groundwater of	
	Jos South 167	
4.50	Mean Seasonal Variation of BOD₅Pattern in Groundwater of	
	Jos South LGA	169
4.51	Spatial Distribution and Seasonal Variation of Biological Oxygen Demand	

		in Groundwater	170
4.52		Mean Seasonal Variation of Organic Matter Pattern in Groundwater of	
		Jos South LGA	171
4.53		Mean Seasonal Variation of TOC Pattern in Groundwaterof Jos South LGA	172
4.54		Mean Seasonal Variation of COD Pattern in Groundwater of Jos South LGA	173
4.55		Mean Seasonal Variation of Total Coliform CountPattern in Groundwater	
		of Jos South LGA 175	
4.56		Spatial Distribution and Seasonal Variation of Coliform in Groundwater	176
4.57		Cluster Diagram Showing the Relationship between Physical Parameters of	
		Groundwater of Jos South LGA	177
4.58		Cluster Diagram Showing the Relationship between Heavy Metals Parameter	
		of Groundwater of Jos South LGA 178	
4.59		Cluster Diagram Showing the Relationship between Major Ions Parameter	
		of Groundwater of Jos South LGA 179	
4.60		Cluster Diagram Showing the Relationship between Oxygen Parameter of	
		Groundwater of Jos South LGA	180
4.61		Cationic Classification of Groundwater in Jos South LGA	182
4.62		Anionic Classification of Groundwater in Jos South LGA	183
4.63	- 1	Grid Map of Well Locations with each Well Bearing Its WQI Value	191
5.1		Apparent Colour Seasonal Variation and Spatial distribution of	
		Groundwater 201	
5.2	209	Seasonal Mean Value of Coliform	
5.3		The spatial Distribution and Seasonal Variation of Zinc during the Dry	
		and Raining season 212	

5.4		The Spatial Distribution and Seasonal Variation of Chloride in	
		Groundwater during theDry and Raining season	215
5.5		Seasonal Distribution and Variation of Groundwater Quality Index (WQI)	
		of the Study Area 220	
5.6		General WQI Rating Map of the Study Area	
	221		
5.7		Overlay of WQI and other Thematic Layer	
	222		
5.8		Water Quality Index of the various Sampled Location and their Associated	
		Land Useand Land Cover	
		224	
5.9		Relationship of WQI and Seasonal Variation	
	225		
5.10		Relationship between Coliform and WQI of Groundwater in the Study Area	226

LIST OF PLATES

Plate		Title	
	Page		
3.1		Solinst Model 107 TLC (Temperature / Level / Conductivity)	
		Meter, with 250 m reel of Tape	6
3.2		Milwaukee uP-based pH Meter Model MW102	6
3.3		PG990 Atomic Absorption Spectrometry	7

LIST OF APPENDICES

Title Appendix Page 1 Guideline Values for Chemicals in Drinking Water 264-267 2 False Colour Composite (FCC) Land sat Image of 2015 with 30m 268 Spatial Resolution Covering the Study Area 3 Accuracy Assessment and Kappa Coefficient of the Classified Land use Land cover map 269 4 Sampling location code, Coordinate and attribute information 270-273 The Level of Temperature parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 274-275 6 The Concentration of Conductivity parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 276-277 7 The Concentration of pH parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 278-279 8 The Concentration of Cadmium parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 280-281 9 The Concentration of Cadmium parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 282-283 10 The Concentration of Lead parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 284-285 The Concentration of Magnesium parameters of Water Samples from 11 Groundwater in Jos South LGA, Plateau State, Nigeria 286-287 12 The Concentration of Calcium Parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 288-289 13 The Concentration of Zinc parameters of Water Samples from Groundwater in Jos South LGA, Plateau State, Nigeria 290-291

14	The Concentration of Nickel parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	292-293
15	The Concentration of Iron parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	294-295
16	The Concentration of Cobalt parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	296-297
17	The Concentration of Chromium parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	298-299
18	The Concentration of Potassium parameters of Water Samples from),
	Groundwater in Jos South LGA, Plateau State, Nigeria	300-301
19	The Concentration of Coliform parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	302-303
20	The Concentration of Total Suspended Solid (TSS) of Water	
	Samples from Groundwater in Jos South LGA, Plateau State, Nigeria	304-305
21	The Level of Turbidity of Water Samples from Groundwater in	
	Jos South LGA, Plateau State, Nigeria	306-307
22	The Level of Apparent Colour of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	308-309
23	The Level of True Colour of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	310-311
24	The Concentration of Total Dissolved Solid (TDS) of Water	
	Samples from Groundwater in Jos South LGA, Plateau State, Nigeria	312-313
25	The Concentration of Alkalinity of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	314-315
26	The Concentration of Acidity of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	316-317
27	The Concentration of Mg2+ parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	318-319
28	The Concentration of Na+ parameters of Water Samples from	

	Groundwater in Jos South LGA, Plateau State, Nigeria	320-321
29	The Concentration of K+ parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	322-323
30	The Concentration of HCO3- parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	324-325
31	The Concentration of Chloride parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	326-327
32	The Concentration of SO4 2- parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	328-329
33	The Concentration of NO3- parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	330-331
34	The Concentration of PO4 parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	332-333
35	The Concentration of Dissolved Oxygen parameters of Water	
	Samples from Groundwater in Jos South LGA, Plateau State, Nigeria	334-335
36	The Concentration of Biological Oxygen Demand parameters of Water	
	Samples from Groundwater in Jos South LGA, Plateau State, Nigeria	336-337
37	The Concentration of Dissolved Oxygen Saturation	
	parameters of Water Samples from Groundwater in Jos	
	South LGA, Plateau State, Nigeria 338-339	
38	The Concentration of Organic Matter parameters of Water Samples	
	from Groundwater in Jos South LGA, Plateau State, Nigeria	340-341
39	The Concentration of Total Organic Carbon parameters of Water	
	Samples from Groundwater in Jos South LGA, Plateau State, Nigeria	342-343
40	The Concentration of COD parameters of Water Samples from	
	Groundwater in Jos South LGA, Plateau State, Nigeria	344-345
41	Conversion table from mgL-1 to meqL-1 of the major ions	346

42	Procedures for Preparation of Standard Solutions		347
42.1	Turbidity Standard		347
42.2	Calcium Standard		348
42.3	Magnesium (Mg) Standard		349
42.4	Sodium (Na) Standard		349
42.5	Potassium (K) Standard	350	
42.6	Nitrate (NO3) Standard	350	
42.7	Chloride (CI) Standard	351	
42.8	Sulphate (SO₄) Standard	351	
42.9	Electrical Conductivity Standardization	352	
43	Water Quality Index Calculator Print Screen Interface	353	
44	WQI Factors and Weight		354
45	Graphs used to convert field data to a Q or Quality Value		355
46.1	Q Graph for Coliform		356
46.2	Q Graph for Total Solids	357	
46.3	Q Graph for Dissolved Oxygen	358	
46.4	Q Graph for pH	359	
46.5	Q Graph for Turbidity		360
46.6	Q Graph for BOD		361
46.7	Q Graph for Nitrate		362
46.8	Q Graph for Phosphate	363	
46.9	Concentration in Water and Conversion Unit		364
4.7	Water Quality Index of Different Seasons 5-367		

LIST OF ABBREVIATIONS AND ACRONYMS USED

% parts per thousand

a.m. ante meridian (before noon)

A.P.H.A. American Public Health Association

AAS Atomic Absorption Spectrophotometer

ADEQ Arizona Department of Environmental Quality (USA)

Ag Silver AgNO₃ Silver nitrate

AL Action Level

Amsl. Above mean sea level ANOVA Analysis of variance (Statistics)

APHA American Public Health Association

As Arsenic

ASDC Atmospheric Science Data Center

AWWA American Water Works Association

B Bottom
Ba Barium
Be Beryllium

BOD5 Biochemical Oxygen Demand (over 5 days)

BS Base Saturation

C Carbon
Ca Calcium
CaCO3 Calcium carbonate
Cd Cadmium

C_d Degree of Contamination
CEC Cation Exchange Capacity

CEFAS Centre for Environment, Fisheries and Aquaculture Science

C_f Contamination Factor

Cl Chloride
Cl Chlorine
cm centimetre
cm³ centimetre cube
Cr Chromium

Cu Copper

CV Coefficient of variation

D Distance

DDT Dichlorodiphenyltrichloroethane

DO Dissolved Oxygen

DOC Dissolved Organic Carbon

DS Dry Season

E East of Greenwich Meridian
E.D.T.A. Ethylene-diamine-tetra-acetic acid

e.g. exempli gratia (for example, for instance)

EC Electrical Conductance

ED Early Dry

EDTA Ethylene-Diamine-Tetra-acetic Acid EQS Environmental Quality Standard

ER Early Rain

ER Enrichment Ratio

ESPS Environmental Statement for Port of Southampton

et al.etalli(and others)etc.etceteria (and others)FFischer (Statistics)

FAAS Flame Atomic Absorption Spectrophotometer

FCC False Colour Composite

Fe Iron

FEPA Federal Environmental Protection Agency (Nigeria)

FES Flame Emission Spectrophotometer

FFG Functional Feeding Groups

Fig. Figure(s)

Formulae

g gram

GPS Global Positioning System

h hourH Hydrogenha HectareHCo₃ Carbonic acid

HCl Hydrochloric Acid

Hg Mercury i.e. idest(that is)

IEB Ionic Error of Balance

IITA International Institute of Tropical Agriculture

ISSS International Society of Soil Science

K Potassium
kg kilogram
km Kilometre
kW kilowatt
L Litre
LD Late Dry

LGA Local Government Area

LR Late Rain

LSRCA Lake Simcoe Region Conservation Authority

LULC Land use Land Cover

m metre

m/s meter per seconds
m² meter square
Max Maximum value
MCM million cubic metres

MDNR Maryland Department of Natural Resources (USA)

meqL- 1millequivalent per litre

Mg Magnesium Mg Magnesium mg milligram

min Minimum value

ml millilitre
mm millimetre
Mn Manganese
Mo Molybdenum
N Nitrogen

N North of the Equator

Na Sodium

NASA National Aeronautics and Space Administration (USA)

ND Not determined / No data

NFESC Naval Facilities Engineering Service Center (USA)

Ni Nickel nm Nanometer NO₃ Nitrate

NOAA National Oceanic and Atmospheric Administration (USA)

NPRB North Pacific Research Board
NTU Nephelometric Turbidity Unit

O₂ Oxygen

°C Degree Celsius
OC Organic Carbon
OM Organic Matter

Op. cit. Opere citato (in the work cited)

Org Organism

Org/m² Organisms per meter square

P Phosphorus

p Probability value (Statistics)

p.m. Post meridian

PAHs Polycyclic Aromatic Hydrocarbons

PAST Palaeontological Statistics

PASW Predictive Analytic SoftWare

Pb Lead

PCA Principal Component Analysis
PCBs Polychlorinated Biphenyls
PEL Probable Effect Level

pH *potential Hydrogeni*(potential of hydrogen)

PO₄³⁻ Orthophosphate

POC Particulate Organic Carbon

Pp Pages

ppm Parts per million

PSWC Plateau State Water Corporation

Pt-Co Platinum cobalt unit

QA/QC Quality Assurance / Quality Control

r Correlation coefficient

RR Rain

RS Rainy Season RV Reference Value

s Second S Sulphur

S.A.R Sodium Absorption Ratio

s.d. Standard deviation (of the mean)S.E. Standard error (of the mean)S.E.M. Standard error of the mean

s.g Specific gravity
S/N Serial number
SO4²⁻ Sulphate ion
spp Species (Plural)

SPSS Statistical Package for the Social Sciences

SWCSMH Soil and Water Conservation Society of Metro Halifax (Canada)

TDS Total Dissolved Solids
TEL Threshold Effect Level
THC Total Hydrocarbon

TIN Triangulated Irregular Network

TLES Threshold Level Effect in Sediments

TOC Total Organic Carbon
TOM Total Organic Matter

TS Total Solids

TSS Total Suspended Solids

TV Target Value U Uranium

UAE United Arab Emirates
UK United Kingdom

UNEP United Nations Environmental Program

USA United States of America

USDA United States Department of Agriculture
USEPA United State Environmental Protection Agency

V Vanadium

W West of Greenwich meridian
WEF Water Environment Federation

WHO World Health Organisation

WQI Water Quality Index

Zn Zinc

DEM Digital Elevation Model
3D 3 dimension Visualization
DTM Digital Terrain Model

ABSTRACT

This study established the landuse pattern and determined the physio-chemical properties of the groundwater of Jos South Local Government Area, Plateau State, Nigeria over a period of two years, 2013-2015. It also determined the variation of the physic-chemical parameters in relation to space, depth, season and geology of the study are. This was with a view to providing information on the groundwater quality of the study area.

The field period was divided into early dry, late dry, early rain, and rainy seasons. Sixty four (64) sampling stations generated from grid demarcation were established. At each of the sampling station, water samples were collected from wells and boreholes. The geographical coordinates of each sample location were recorded using hand-held GPS device. Physical water quality parameters such as; temperature, conductivity, well and water depth, and pH were determined in the field. Parameters determined by Titrimetric methods include DO and BOD, organic matter, TOC and COD, total alkalinity and total acid, Ca²⁺ and Mg²⁺ and Cl⁻. Parameters determined by instrumental methods include SO₄²⁻, NO₃⁻, colour, Na⁺, K⁺ and turbidity. Heavy metals (Mn, Pb, Fe, Cr, Zn, Cd, Co, Ni, Cu) were analyzed using Atomic Absorption Spectrometery (AAS). The data obtained were analyzed using descriptive statistics, ANOVA, correlation analysis, cluster analysis and Principal Component analysis (PCA). The results were also integrated in a GIS environment and relevant thematic layers (terrain, geology, land use/ land cover e.t.c) generated

The groundwater was classified as slightly buffered and bicarbonate with an observed ionic order of dominance of the form: $Ca^{2+} > Na^+ > K^+ > Mg^{2+}$. This cations order occurred in therainy season with the dry seasons cationic order of $Ca^{2+} > Na^+ > Mg^{2+} > K^+$. The results also revealed definite pattern of significant variation ($P \le 0.05$) in majority of the elements tested. Among the parameters investigated, water depth, apparent colour, truecolour, turbidity, TS and TSS were higher in concentrations in the dry season than in the rainy season while water temperature was higher in the dry season. Most ofthe major ions (HCO_3 , Cl^2 -, SO_4 ²⁻, Ca^{2+} , Na^+ and K^+) were higher during the rainy season thanin the dry season whereas nitrate, Mg^{2+} and phosphate were higher during the dry season. The overall sequence of metals concentrations in the groundwater were in the order ofMn>Pb>Fe>Cr>Zn>Cd>Co>Ni>Cu. The concentrations of the tested heavy metals weregenerally lower and within the permissible limit of WHO. The mean coliform abundance of 141.96 cfu100m/Lrecorded for the study area was higher than the maximum of 3 coliforms per 100 ml recommended by the WHO. The groundwater quality index of the study area fell between 0 and 65 which classified the groundwater quality into bad, fair and good.

The study concluded that the geology of the study area, terrain characteristics, anthropogenetic activities and landuse pattern remain dominantfactors affecting the groundwater quality. Although the physicochemical parameters of the groundwater were within permissible limits recommended by the WHO, the waters had elevated coliform concentration levels.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Water is life. It is required by all living things for metabolism (Ayedun*et al.*, 2011). It is second only to air as the most essential natural resource for the survival of man. According to the World Health Organization (WHO), the minimum water requirements for developing and developed countries per person per day are 120 and 400 litres respectively due to difference in infrastructure for water development(WHO, 2012, GLAAS, 2012). Water is a vital resource upon which most human activities such as agriculture, industry, transportation, domestic use and recreation depend (Nwankwoala and Nwagbogwu, 2012). The importance of water depends on its unique properties assingular universal solvent. "The available water supply is a boundary line beyond which no society or nation, agriculture or industry can go" (Daramola, 2004). There are different sources of water namely; atmospheric, surface and groundwater. Surface water occurs as either fresh or saline. Saline water is found mainly in seas, oceans and occasionally as fossil water trapped within rocks. It constitutes about 97% of total earth water. Fresh water, which constitutes less than 3%, occurs either as solid in ice caps (68.70%), or liquid found as groundwater (30.10%). Surface water (1.20%) which occurs as streams, rivers, lakes e.t.c. is readily available for daily use, while groundwater is available and accessed through wells, springs and boreholes (Oyebode, 2005; Ajewole, 2005; Hefkes *et al.*, 1981).

Besides, the current level of urbanization and development has placed additional pressure on water quality even in those areas where surface water is available. As a result of this, there is a need for alternative sources. Groundwater sources provide the most readily available alternative.

Groundwater is an accumulated pool of water which occurs beneath the earth's surface. It constitutes an important source of water for domestic, agriculture and industrial production (Ranjana, 2009).

The use of groundwater has increased significantly in the last decades due to its widespread occurrence. About 2 billion people depend directly upon aquifers for drinking water. About 40% of world's food is produced by irrigated agriculture that relies largely on groundwater (Morris *et al.*, 2003).

Naturally, groundwater contains mineral ions. These ions are slowly dissolved from soil particles, sediments and rocks as the water travels along mineral surface in the pores or fractures of the unsaturated zone and the aquifer. Generally, metals associated with the aqueous phase of soils are subject to movement with soil water, and may be transported through the vadose zone to groundwater (Pierce *et al.*, 1998). They are referred to as dissolved solids. Some dissolved solids may have originated from the precipitation water or river water that recharges local aquifers. More importantly, it is the dissolved solids and pollutants by man as a result of different anthropogenic activities that account for greater pollution effect. Such contamination from anthropogenic factors is increasingly affecting the

quality and limiting groundwater use. It has been established that once pollutants enters the subsurface environment, it may remain concealed for many years, becoming dispersed over wide areas of groundwater aquifer and rendering groundwater supplies unsuitable for consumption and other uses (Sunderet al., 2010). Therefore, understanding the potential influences of human activities and the impact of natural interaction on groundwater quality is important for protection and sustainable use of groundwater resources (Jehangiret al., 2013).

The assessment of groundwater suitability for various purposes such as drinking, domestic, irrigation and industrial production requires the determination of the concentrations of some important parameters to show if they conform to appropriate guidelines stipulated by World Health Organization (WHO) and other national and international water regulatory organizations (Srinivasamoorthyet al.,2009). Evaluation of water quality prior to its use will assist in water treatment and disease prevention. It will also guide farmers in preventing probable deleterious effects on plant productivity as well as protecting industrial equipment against incrustation and corrosion.

Previous groundwater assessment involves various elemental analyses which are subjected to different statistical computation either aimed to check for variance or trend. This method though still in use produces numerous results that are sometimes difficult to interpret and inadequate for spatial analysis. Based on this, the Water Quality Index Computation and the use of GIS (Geospatial techniques) have been introduced to provide an easy assessment of spatial distribution of water quality in different areas and multi-spatial criteria analysis combine physicochemical parameters, landuse indices and geology to determine the quality of groundwater in such a way that highlights visible indicators of groundwater quality. Kavita and Vineeta (2010) used this method to evaluate and develop WQI for drinking purposes in Singhbhum District, India. Similarly, Babaeiet al.(2011) used similar method to outline the status of water quality of Karoon River in Iran. In another study, Yogendra and Puttaiah (2008) also used WQI to determine the suitability of different water bodies for urban water supply in Shimoga town, Karnataka, India.

Similar studies have not been carried out in Nigeria especially in the Jos Plateau area which has a peculiar geology in Nigeria. Surface water sources are generally seasonal in this area for which reason most residents depend on groundwater.

1.2 Statement of ResearchProblem

The concern that physico-chemical elements in drinking water present a potential health hazard if they exceed certain concentrations has prompted several statutory bodies such as the World Health Organization (WHO) and Standard Organization of Nigeria (SON) to establish maximum allowable concentrations of trace elements in drinking water supplies. This concern has heightened in recent times considering the long list of diseases and health disorder caused by unclean water. In