

OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE FACULTY OF EDUCATION DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND COUNSELLING

2009/2010 HARMATTAN SEMESTER EXAMINATION M.Ed./M.A/Ph.D DEGREE EXAMINATION

CFC 605: STATISTICS IN EDUCATION

Instruction

Answer ALL 1. Several stu	Quest dents	ions. majorin	ng in Ps	<u>Tim</u> sycholog	<u>e Allow</u> gy Arch	ed: 3 He itecture	ours and Engi	neering obtained the following
scores on a te	st of 1	nechani	cal drav	wing:				
Psychology:	5	3	4	'2	6			LIGHT LUMAN
Architecture:	7	5	7	6	8 ·	4	3	ICCEDUCI
Engineering:	S	9	7	9	6	7		ICOEKVEL

- (a) Formulate a null hypothesis from the above
- (b) Compute a measure of association between the test scores and major area of study.
 - Comment on your results
- (c) Given that η =3.16 at p<.05, test the null hypothesis that η is significant. Interpret your results.

2. The following are arithmetic test scores and final exam scores for 12 students in an elementary statistics course:

Student number	Arithmetic Test (X)	Final Exam (Y)
Ι	33	65
2	36	51
3	39	53
4	29	42
5.	41'	50
6	3\$	53
7	42	64
8	35	54
9	23	50
10	37	45
11	28	63
12	25	50

From the above,

- (a) Find b_0 and b_1 in the least squares prediction equation $\hat{Y}i = b_0 X_i^{-1} + b_0^{-1}$
- (b) Predict the final exam score of students no 13 whose arithmetic test score was 40
- (c) Draw a graph to represent the above equation.
- (d) Compare your estimate from the regression equation with that of the graph? How would you explain the difference, if any?
- (e) Find the standard error of estimate. What does this value stand for?
- **3.** A particular product sold in supermarkets is often purchased on impulse. Three different floor locations have been tried for this product over a 21 week period. Sales in units per week for each location are reproduced below:

Location I	Location 2	Location 3
31	26	2
35	13	12
33	27	23
36	18	21
42	24	17
44	34	25
18	40	30

Employ the Kruskal-Wallis test and a critical probability of 5% (α =.05) to test the null hypothesis that there is no significant difference in the distribution of sales that would be encountered at the three locations. Compare pour result with the F-statistic on the same data. Use T-Method test of multiple comparisons to determine which two locations had significant sales.

4(a) Explain the terms:

(i) Robustness (ii) degree of freedom (df) (iii) level of significance (iv) critical value (v) power of a test

(b) Distinguish between the following

- (i) Type I and type II error
- (ii) One-tailed and two-tailed tests
- (iii) Meso-kurtic and platy-kurtic skewness
- (iv) Parametric and non-parametric tests
- (v) Dependent and independent variables