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Showing Coarsening Upward, Gradational Base and Erosional Abrupt Tops in

       

Sand Gross Interval Map Showing Less Gross Thickness at the 

SW and Thicker Resevori Section at the SE in Imaemi Field.  

Gross Map Showing its Sand High Sand 

Quality Distribution at the SW Part of the Field.     

Sand Top tvdss Map Showing Shallow Depth to the Reservoir 

Tops at the NW and Deeper Depth at the SE in Imaemi Field.  

SE Cross Section of M-Sand, Showing the Stratigraphic Position

of the Reservoir, Shale Lenses and the General Sand Development.   

Figure 5.23: Plot of Graphic Mean of Particle Sizes Against Depth Showing 

Trend of Increase in Graphic Mean with Increasing Depth in Imaemi-41 Well.

Ternary Diagram of M-Sand Reservoir Showing Content of  

to Sandy Shale in Imaemi-41 Well (Modified from 

Tucker, 1991). Note: C is Shale, sC is Sandy Shale, Z is Silt, cS is Shaly Sand,

sZ is Silty Sand and S is Sand.       

Figure 5.25: Standard Deviations-bivariates Curve Showing Variation of  

 

Showing Coarsening Upward, Gradational Base and Erosional Abrupt Tops in 

   130  

Showing Less Gross Thickness at the  

   133 

   134 

Map Showing Shallow Depth to the Reservoir  

   139 

Sand, Showing the Stratigraphic Position 

   140 

Figure 5.23: Plot of Graphic Mean of Particle Sizes Against Depth Showing  

41 Well.  142 

41 Well (Modified from  

Tucker, 1991). Note: C is Shale, sC is Sandy Shale, Z is Silt, cS is Shaly Sand, 
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Standard Deviation with Depth in Imaemi

Figure 5.26: Plot of Inclusive Graphic Skewness Against Depth Showing 

Increase of Skewness with Depth in Imaemi

Figure 5.27: Imaemi-41 Well Log Section Showing Sample Locations and a 

Millimetre to Centimetre Thick Shale Lense at the Lower Part of Sample 

Number S9.    

Figure 5.28 Photomicrograph of Sample Number S1, at Depth of 2356.10 m

(7730.00 ft) MD, Showing the Overview of Crystal Grains Under Cross 

Polarized Light (XPL). Magnification, X10. Note: q is Quartz, f is Feldspar

and rf is Rock Fragment.  

Figure 5.29: Photomicrograph of Sample Number S1 at 2356.10 m (7730.00 ft) 

MD, Showing Crystals of Tourmaline and Probably Zircon Under Cross

Light, Magnification x 10. Note: Tm is Tourmaline, Zr is Zircon, Op is Opaque 

Mineral.    

Figure 5.30: Plot of Heavy Minerals Against Depth Showing Concentration

Between  2325.62 to 2337.82 m (7630.00 to 7670.00 ft) Depth MD in Imaemi

Well.     
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eviation with Depth in Imaemi-41 Well.    

Figure 5.26: Plot of Inclusive Graphic Skewness Against Depth Showing  

Increase of Skewness with Depth in Imaemi-41 Well    

41 Well Log Section Showing Sample Locations and a 

Millimetre to Centimetre Thick Shale Lense at the Lower Part of Sample  

       

Photomicrograph of Sample Number S1, at Depth of 2356.10 m

(7730.00 ft) MD, Showing the Overview of Crystal Grains Under Cross  

(XPL). Magnification, X10. Note: q is Quartz, f is Feldspar

       

Figure 5.29: Photomicrograph of Sample Number S1 at 2356.10 m (7730.00 ft) 

MD, Showing Crystals of Tourmaline and Probably Zircon Under Cross-polarized

, Magnification x 10. Note: Tm is Tourmaline, Zr is Zircon, Op is Opaque 

       

Figure 5.30: Plot of Heavy Minerals Against Depth Showing Concentration

Between  2325.62 to 2337.82 m (7630.00 to 7670.00 ft) Depth MD in Imaemi
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41 Well Log Section Showing Sample Locations and a  
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Photomicrograph of Sample Number S1, at Depth of 2356.10 m 

(XPL). Magnification, X10. Note: q is Quartz, f is Feldspar 

   149 

Figure 5.29: Photomicrograph of Sample Number S1 at 2356.10 m (7730.00 ft)  

polarized 

, Magnification x 10. Note: Tm is Tourmaline, Zr is Zircon, Op is Opaque  

   150 

Figure 5.30: Plot of Heavy Minerals Against Depth Showing Concentration 

Between  2325.62 to 2337.82 m (7630.00 to 7670.00 ft) Depth MD in Imaemi-41 
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Figure 5.31: M-Sand Gross Interval Thickness Map Showing Higher Reservoir 

Thickness at the NW and Low Thickness at the SW in Imaemi Field. 

Figure 5.32 M-Sand Net-To-Gross Map Showing Better Reservoir Sand Quality,

 0.6500 to 0.6625 Around the Southeast and Low Net

to 0.5000 Toward the Northwest. 

Figure 5.33: Cross Section Through N

Showing the Reservoir Distribution in the Field. 

Figure 5.34: N-Sand Shale Volume Map Showing Shale Distribution in the 

Reservoir of Imaemi Field.  

Figure 5.35: N-Sand RQI Map Showing the Spatial Variation in Reservoir Quality 

with High Quality Sand in the SE and Low in the NW.

Figure 5.36: N-Sand Gross Interval Map Showing Gross Reservoir Thickness

Distribution in Imaemi Field with Thicker Section in the SW and Thinner at the NW. 

Figure 5.37: N-Sand Net-To-Gross Map Showing the Reservoir Quality Distribution 

in Imaemi Field with High Sand Quality in the East and Low at the Northwest. 

Figure 5.38: H-Sand Facies Simulation Model (Realization

Facies Distribution in the Reservoir. 
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Sand Gross Interval Thickness Map Showing Higher Reservoir 

Thickness at the NW and Low Thickness at the SW in Imaemi Field.  

Gross Map Showing Better Reservoir Sand Quality,

nd the Southeast and Low Net-To-Gross Ratio of 0.4875

to 0.5000 Toward the Northwest.       

Figure 5.33: Cross Section Through N-Sand Along the strike NW-SE Direction, 

Showing the Reservoir Distribution in the Field.     

ale Volume Map Showing Shale Distribution in the 

       

Sand RQI Map Showing the Spatial Variation in Reservoir Quality 

with High Quality Sand in the SE and Low in the NW.   

Interval Map Showing Gross Reservoir Thickness

Distribution in Imaemi Field with Thicker Section in the SW and Thinner at the NW. 

Gross Map Showing the Reservoir Quality Distribution 

in Imaemi Field with High Sand Quality in the East and Low at the Northwest. 

Sand Facies Simulation Model (Realization-0) Showing the

Facies Distribution in the Reservoir. Note: 1= Shale, 2 = Sandy Shale, 3 = Silt,

 

Sand Gross Interval Thickness Map Showing Higher Reservoir  

   154 

Gross Map Showing Better Reservoir Sand Quality, 

Gross Ratio of 0.4875 

   155 

SE Direction,  

   160 

ale Volume Map Showing Shale Distribution in the  

   163 

Sand RQI Map Showing the Spatial Variation in Reservoir Quality  

   164 

Interval Map Showing Gross Reservoir Thickness 

Distribution in Imaemi Field with Thicker Section in the SW and Thinner at the NW.  166 

Gross Map Showing the Reservoir Quality Distribution  

in Imaemi Field with High Sand Quality in the East and Low at the Northwest.   167 

0) Showing the 

Note: 1= Shale, 2 = Sandy Shale, 3 = Silt, 
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4 = Shaly Sand, 5 = Silty Sand and 6 = Sand

Figure 5.39: H-Sand Facies Simulation Model (Realization

Predominant Silty Sand, Sandy Shale and Shale with other Facies.

Figure 5.40: H-Sand Facies Simulation Model (Realization

 Predominant Silty Sand, Sandy Shale and Shale with other Facies.

Figure 5.41 H-Sand RQI Model (Realization

Distribution in Imaemi Field. 

Figure 5.42: H-Sand Hydrocarbon Saturation Model (Realization

Oil Saturation Distribution in Imaemi Field.

Figure 5.43: H-Sand Hydrocarbon Saturation Model (Realization

Hydrocarbon Pools Separated by Water Wet Zones.

Figure 5.44: I-Sand Facies Simulation Model (Realization

the Different Lithofacies Architecture and Shale Barriers.

Figure 5.45: I-Sand Facies Simulation Model (Realization

the Reservoir Lithofacies Distribution in Imaemi Field.

Figure 5.46: I-Sand Facies Simulation Model (Reali

 Facies to the NW-NE and to the Southwest.
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Silty Sand and 6 = Sand     

Sand Facies Simulation Model (Realization-4) Showing the

Predominant Silty Sand, Sandy Shale and Shale with other Facies.  

Sand Facies Simulation Model (Realization-5) Showing 

nt Silty Sand, Sandy Shale and Shale with other Facies.  

Sand RQI Model (Realization-5) Showing the Reservoir Quality

       

Sand Hydrocarbon Saturation Model (Realization-4) Showing 

Oil Saturation Distribution in Imaemi Field.     

Sand Hydrocarbon Saturation Model (Realization-5) Showing 

Hydrocarbon Pools Separated by Water Wet Zones.    

Sand Facies Simulation Model (Realization-0) Showing 

the Different Lithofacies Architecture and Shale Barriers.   

Sand Facies Simulation Model (Realization-2) Showing  

the Reservoir Lithofacies Distribution in Imaemi Field.   

Sand Facies Simulation Model (Realization-5) Showing Mainly Sand

NE and to the Southwest.     

 

   171 

4) Showing the 

   172 

   173 

5) Showing the Reservoir Quality 

             175 

howing  

   176 

5) Showing  

   177 

   179 

   180 

5) Showing Mainly Sand 
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Figure 5.47: I-Sand PHIA Model (Realization

of Total Porosity in the Reservoir of Imaemi Field.

 Figure 5.48: I-Sand PHIE Model

Distribution of Effective Porosity in the Reservoir of Imaemi Field.

Figure 5.49: I-Sand Effective Pore Radii Model (Realization

Spatial Distribution of Effective Pore Radii in the Reservoir of Imaemi

Figure 5.50: I-Sand Hydrocarbon Saturation Model (Realization

Water Saturation, Sw and Hydrocarbon Saturation in the Reservoir of Imaemi Field.  

Figure 5.51: I-Sand Hydrocarbon Saturation Model (Realization

Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.

Figure 5.52: Histogram of J-Sand Reservoir Facies Distribution in Fraction 

Showing 0.11 Shale (F01), 0.21 Sandy Shale (F02), 0.10 Silt (F03), 0.02 Shaly

 Sand (F04), 0.27 Silty Sand (F05) and 0.28 Sand (F06), an Indication that the

Reservoir is of Good to Very Good Quality with High Sand Content and Low Silt.

Figure 5.53: J-Sand Facies Simulation Model (Realization

Lithofacies Distribution and Architecture in 

Figure 5.54: J-Sand Facies Simulation Model (Realization
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Sand PHIA Model (Realization-5) Showing the Spatial Distribution 

of Total Porosity in the Reservoir of Imaemi Field.    

Sand PHIE Model (Realization-5) Showing the Spatial 

Distribution of Effective Porosity in the Reservoir of Imaemi Field.  

Sand Effective Pore Radii Model (Realization-5), Showing 

Spatial Distribution of Effective Pore Radii in the Reservoir of Imaemi Field.

Sand Hydrocarbon Saturation Model (Realization-2), Showing 

Water Saturation, Sw and Hydrocarbon Saturation in the Reservoir of Imaemi Field.  

Sand Hydrocarbon Saturation Model (Realization-5), Showing

Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.

Sand Reservoir Facies Distribution in Fraction 

Showing 0.11 Shale (F01), 0.21 Sandy Shale (F02), 0.10 Silt (F03), 0.02 Shaly

y Sand (F05) and 0.28 Sand (F06), an Indication that the

Reservoir is of Good to Very Good Quality with High Sand Content and Low Silt.

Sand Facies Simulation Model (Realization-0), Showing  

Lithofacies Distribution and Architecture in the Reservoir.     

Sand Facies Simulation Model (Realization-2), Showing Dominant

 

5) Showing the Spatial Distribution  

   183 

   184 

 

Field.  185 

2), Showing  

Water Saturation, Sw and Hydrocarbon Saturation in the Reservoir of Imaemi Field.   186 

5), Showing 

Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.  187 

Sand Reservoir Facies Distribution in Fraction  

Showing 0.11 Shale (F01), 0.21 Sandy Shale (F02), 0.10 Silt (F03), 0.02 Shaly 

y Sand (F05) and 0.28 Sand (F06), an Indication that the 

Reservoir is of Good to Very Good Quality with High Sand Content and Low Silt.  189 

   190 

2), Showing Dominant 
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Silty Sand and Sand with other Lithofacies Architecture.  

Figure 5.55: J-Sand Facies Simulation Model (realization

 Architectural Association of Component Facies.

Figure 5.56: J-Sand Hydrocarbon Saturation Model (Realization

 Hydrocarbon and Water Saturation Distribution in the Reservoir.

Figure 5.57: J-Sand Hydrocarbon Saturation Model (Realization

High Hydrocarbon Saturation to the Northwest and to the Southwest Section of the

Field.    

Figure 5.58: Histogram of L-Sand Reservoir Facies Distribution in Fraction

 Showing 0.21 Shale (F01), 0.16 Sandy Shale (F02), 0.13 Silt (F03), 0.0

Sand (F04), 0.23 Silty Sand (F05) and 0.21 Sand (F06), an Indication that the

 Reservoir is of Good to Very Good Quality with High Sand and Shale Content

and Low Silt.   

Figure 5.59: L-Sand facies simulation model (realization

distribution in the reservoir. 

Figure 5.60: L-Sand Facies Simulation Model (Realization

Lithofacies Architecture in the Reservoir.
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Silty Sand and Sand with other Lithofacies Architecture.     

Sand Facies Simulation Model (realization-5) Showing the 

Association of Component Facies.    

Sand Hydrocarbon Saturation Model (Realization-2), Showing

Hydrocarbon and Water Saturation Distribution in the Reservoir.  

Sand Hydrocarbon Saturation Model (Realization-5), Showing

High Hydrocarbon Saturation to the Northwest and to the Southwest Section of the

       

Sand Reservoir Facies Distribution in Fraction

Showing 0.21 Shale (F01), 0.16 Sandy Shale (F02), 0.13 Silt (F03), 0.06 Shaly 

Sand (F04), 0.23 Silty Sand (F05) and 0.21 Sand (F06), an Indication that the

Reservoir is of Good to Very Good Quality with High Sand and Shale Content

       

Sand facies simulation model (realization-0) showing lithofacies 

       

Sand Facies Simulation Model (Realization-2), Showing the 

Lithofacies Architecture in the Reservoir.     

 

   191 

   192 

2), Showing 

   194 

howing 

High Hydrocarbon Saturation to the Northwest and to the Southwest Section of the 

   195 

Sand Reservoir Facies Distribution in Fraction 

6 Shaly  

Sand (F04), 0.23 Silty Sand (F05) and 0.21 Sand (F06), an Indication that the 

Reservoir is of Good to Very Good Quality with High Sand and Shale Content 

   197 

ng lithofacies  

   198 

2), Showing the  
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Figure 5.61: L-Sand Facies Simulation Model (Realization

Sub-interwell Scale Spatial Distribution of Lithofacies in the Reservoir.

Figure 5.62: L-Sand PHIA Model (Realization

of Total Porosity in the Reservoir.

Figure 5.63: L-Sand PHIA Model (Realization

of High Total Porosity as Bright Spots in the Reservoir.

Figure 5.64: L-Sand Effective Pore Radii Model (Realization

the Spatial Distribution of Effective Pore Radii in the Reservoir.

Figure 5.65: L-Sand Hydrocarbon Saturation Model (Realization

the Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.

Figure 5.66: L-Sand Hydrocarbon Satura

the Spatial Distribution of Hydrocarbon Saturation to the Northwest and to the 

Southwest Section of the Reservoir.

Figure 5.67: L-Sand Hydrocarbon Saturation Model (Realization

 the Spatial Distribution of Hydrocarbon Saturation at the Southwest, Northwest

and Little to the Southeast Sections of the Reservoir. 

Figure 5.68: Histogram of M-Sand Reservoir Facies Distribution in Fraction
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Sand Facies Simulation Model (Realization-5), Showing     

interwell Scale Spatial Distribution of Lithofacies in the Reservoir. 

Sand PHIA Model (Realization-0), Showing the Spatial Distribution

he Reservoir.      

Sand PHIA Model (Realization-5), Showing Spatial Distribution

of High Total Porosity as Bright Spots in the Reservoir.   

Sand Effective Pore Radii Model (Realization-5), Showing 

ribution of Effective Pore Radii in the Reservoir.    

Sand Hydrocarbon Saturation Model (Realization-0), Showing

the Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.

Sand Hydrocarbon Saturation Model (Realization-2), Showing

the Spatial Distribution of Hydrocarbon Saturation to the Northwest and to the 

Southwest Section of the Reservoir.        

Sand Hydrocarbon Saturation Model (Realization-5), Showing

ribution of Hydrocarbon Saturation at the Southwest, Northwest

and Little to the Southeast Sections of the Reservoir.    

Sand Reservoir Facies Distribution in Fraction

 

 

   200 

0), Showing the Spatial Distribution 

   202 

5), Showing Spatial Distribution 

   203 

5), Showing  

   204 

0), Showing 

the Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.  205 

2), Showing 

the Spatial Distribution of Hydrocarbon Saturation to the Northwest and to the  

   206 

5), Showing 

ribution of Hydrocarbon Saturation at the Southwest, Northwest 

   207 

Sand Reservoir Facies Distribution in Fraction 
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 Showing 0.22 Shale (F01), 0.21 Sandy Shale (F02), 0.1

 Sand (F04), 0.26 Silty Sand (F05) and 0.02 Sand (F06), an Indication that the

Reservoir is of Low Quality with High Shale and Low Sand Content

Figure 5.69: M-Sand Facies Simulation Model (Realization

the Spatial Distribution of the Different Facies Including Shale Barriers in

Imaemi Field.    

Figure 5.70: M-Sand Facies Simulation Model (Realization

the Reservoir Different Lithofacies Architecture in the Field. 

Figure 5.71: M-Sand Facies Simulation Model (Realization

Facies Including the Dominant Silty Sand, Sandy Shale and Shale in the Reservoir. 

Figure 5.72: M-Sand PHIA Model (Realization

Porosity Occurrence in the Reservoir.

Figure 5.73: M-Sand Effective Pore Radii Model (Realization

Spatial Distribution in the Reservoir.

Figure 5.74: M-Sand Hydrocarbon Saturation Model (Realization

Undercharged Reservoir, with Little Hydro

Figure 5.75: M-Sand Hydrocarbon Saturation Model (Realization
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Showing 0.22 Shale (F01), 0.21 Sandy Shale (F02), 0.18 Silt (F03), 0.10 Shaly

Sand (F04), 0.26 Silty Sand (F05) and 0.02 Sand (F06), an Indication that the

Reservoir is of Low Quality with High Shale and Low Sand Content. 

Sand Facies Simulation Model (Realization-0), Showing 

Distribution of the Different Facies Including Shale Barriers in 

       

Sand Facies Simulation Model (Realization-2) Showing  

the Reservoir Different Lithofacies Architecture in the Field.   

Facies Simulation Model (Realization-5) Showing the Different

Facies Including the Dominant Silty Sand, Sandy Shale and Shale in the Reservoir. 

Sand PHIA Model (Realization-5) Showing Low Overall Total

Reservoir.     

Sand Effective Pore Radii Model (Realization-5) Showing 

Spatial Distribution in the Reservoir.      

Sand Hydrocarbon Saturation Model (Realization-0) Showing

Undercharged Reservoir, with Little Hydrocarbon Saturation Occurrences.

Sand Hydrocarbon Saturation Model (Realization-2) Showing

 

8 Silt (F03), 0.10 Shaly 

Sand (F04), 0.26 Silty Sand (F05) and 0.02 Sand (F06), an Indication that the 

   209 

 

   210  

   211 

5) Showing the Different 

Facies Including the Dominant Silty Sand, Sandy Shale and Shale in the Reservoir.  212 

5) Showing Low Overall Total 

   214 

 

   215 

0) Showing 

carbon Saturation Occurrences.   216 

2) Showing 
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Spatial Distribution of Hydrocarbon Saturation in an Undercharged Reservoir.

Figure 5.76: M-Sand Hydrocarbon Saturation Model (Realization

Spatial Distribution of Hydrocarbon in an Undercharged Reservoir.

Figure 5.77: N-Sand Facies Simulation Model (Realization

the Spatial Distribution of the Different Lithofacies in the Reservoir.

Figure 5.78: N-Sand Facies Simulation Model (Realization

Different Lithofacies Distribution within the Reservoir. 

Figure 5.79: N-Sand Facies Simulation Model (Realization

the Spatial Distribution of the Different Lithofacies Including Shale and Sa

Shale Barriers to Vertical Flow of Fluid.

Figure 5.80: N-Sand Shale Volume (Vsh) Model (Realization

Distribution of Shale in the Reservoir. The Cleanest Section of the Reservoir

 with Nearly 40% Shale Volume Occurs to the South an

50% Value are Common Toward the Northwest.

Figure 5.81: N-Sand Shale Volume (Vsh) Model (Realization

Distribution of Shale in the Reservoir.

Figure 5.82: N-Sand Hydrocarbon Saturation Model (Realizatio
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Spatial Distribution of Hydrocarbon Saturation in an Undercharged Reservoir.

Sand Hydrocarbon Saturation Model (Realization-5) Showing

Spatial Distribution of Hydrocarbon in an Undercharged Reservoir. 

Sand Facies Simulation Model (Realization-0) Showing 

the Spatial Distribution of the Different Lithofacies in the Reservoir. 

imulation Model (Realization-2) Showing the 

Different Lithofacies Distribution within the Reservoir.    

Sand Facies Simulation Model (Realization-5) Showing  

the Spatial Distribution of the Different Lithofacies Including Shale and Sa

Shale Barriers to Vertical Flow of Fluid.     

Sand Shale Volume (Vsh) Model (Realization-0) Showing 

Distribution of Shale in the Reservoir. The Cleanest Section of the Reservoir

with Nearly 40% Shale Volume Occurs to the South and Southwest, while Over

50% Value are Common Toward the Northwest.    

Sand Shale Volume (Vsh) Model (Realization-5) Showing 

Distribution of Shale in the Reservoir.     

Sand Hydrocarbon Saturation Model (Realization-0) Showing

 

Spatial Distribution of Hydrocarbon Saturation in an Undercharged Reservoir.  217 

Showing 

   218 

   220 

2) Showing the  

   221 

the Spatial Distribution of the Different Lithofacies Including Shale and Sandy 

   222 

0) Showing  

Distribution of Shale in the Reservoir. The Cleanest Section of the Reservoir 

d Southwest, while Over 

   224 

5) Showing  

   225 

0) Showing 
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 Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest, 

Southeast, and in Traces within Other Sections Indicated by Red Colour and 

Water Intervals by Blue. 

Figure 5.83: N-Sand Hydrocarbon Saturation Model (Realiz

Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest, 

Southwest, and Traces to the Northeast and other Sections Indicated by Red

Colour, the Predominant Water Wet Intervals are Indicated as Blue. 

Figure 6.1: Depositional Environments of Imaemi Field, Showing Depositional 

Trend, Depositional Energy Changes, Facies Association and Sequence Boundaries. 

Figure 6.2: Stratigraphic Panel Diagram of Imaemi Field, Showing Reservoirs

Architecture from H-Sand to N
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Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest, 

Southeast, and in Traces within Other Sections Indicated by Red Colour and 

       

Sand Hydrocarbon Saturation Model (Realization-5) Showing 

Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest, 

Southwest, and Traces to the Northeast and other Sections Indicated by Red

Colour, the Predominant Water Wet Intervals are Indicated as Blue.  

Figure 6.1: Depositional Environments of Imaemi Field, Showing Depositional 

Trend, Depositional Energy Changes, Facies Association and Sequence Boundaries. 

Figure 6.2: Stratigraphic Panel Diagram of Imaemi Field, Showing Reservoirs

Sand to N-Sand, Viewing from the Southern Direction. 

 

Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest,  

Southeast, and in Traces within Other Sections Indicated by Red Colour and  

   226 

5) Showing  

Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest,  

Southwest, and Traces to the Northeast and other Sections Indicated by Red 

   227 

Figure 6.1: Depositional Environments of Imaemi Field, Showing Depositional  

Trend, Depositional Energy Changes, Facies Association and Sequence Boundaries.  229 

Figure 6.2: Stratigraphic Panel Diagram of Imaemi Field, Showing Reservoirs 

Sand, Viewing from the Southern Direction.   236 
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APPENDICES   

Appendix 1:  Core Description 

Appendix 2: Tabulation of Emery’s (1938) Sedimentation and Pipette 

Analyses Results   

Appendix 3: Particle Size Analyses Histograms for Samples of Imaemi

and Imeami-43 Wells (Modality of Histograms is for Sand 

Fractions, < 4 , Only).                                                      

Appendix 4: Probability Plots for Emery Sedimentation and Pipette Analyses

Appendix 5: Particle Size Analyses Statistical Results Tables

Appendix 6: Primary and Heavy Minerals Occurrence in Samples of Imeami

 and Imaemi-43 Wells  

Appendix 7: Well Average Petrophysical Summary  

Appendix 8: Facies Variogram Modelling Parameters

Appendix 9: SGeMS Parameter Files for Imaemi Field Reservoirs Facies

 Modelling    
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LIST OF PLATES:  PETROGRAPHIC AND HEAVY 

MINERALS PHOTOMICROGRAPHS

Plate 1 Photomicrograph of Sample Number S4A, at 2350.01 m (7710.00 ft)

 Depth Showing the Overview of Crystal Grains at X10 Magnification Under 

Cross Polarized Light (XPL). Quartz Grains (q) are Seen as Dominant Grains, 

Followed by Microcline and Plagioclase Feldspar Crystals (f). Grains are

Subrounded to Rounded.  

Plate 2: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft)

 MD Depth, Showing Quartz (q), and Plagioclase Feldspar (f), Weathered Rock 

Fragments (wrf), and Growth in Quartz (qg) Under Cross Polarized Light (XPL) at 

Magnification X40.  

Plate 3: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) MD 

Depth,   Showing Quartz (q), Compressed and Fractured Feldspar Grain (fr) with

 Eroded Edges, Rock Fragments (rf), Under Cross Polarized Light (XPL),

 Magnification, X40.  

Plate 4: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft)
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LIST OF PLATES:  PETROGRAPHIC AND HEAVY  

MINERALS PHOTOMICROGRAPHS     

Photomicrograph of Sample Number S4A, at 2350.01 m (7710.00 ft)

Depth Showing the Overview of Crystal Grains at X10 Magnification Under 

). Quartz Grains (q) are Seen as Dominant Grains, 

Followed by Microcline and Plagioclase Feldspar Crystals (f). Grains are 

       

Plate 2: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft)

Quartz (q), and Plagioclase Feldspar (f), Weathered Rock 

Fragments (wrf), and Growth in Quartz (qg) Under Cross Polarized Light (XPL) at 

       

Plate 3: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) MD 

Showing Quartz (q), Compressed and Fractured Feldspar Grain (fr) with

Eroded Edges, Rock Fragments (rf), Under Cross Polarized Light (XPL), 

       

Plate 4: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft)

 

    405 - 420 

Photomicrograph of Sample Number S4A, at 2350.01 m (7710.00 ft) 

Depth Showing the Overview of Crystal Grains at X10 Magnification Under  

). Quartz Grains (q) are Seen as Dominant Grains,  

         405 

Plate 2: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) 

Quartz (q), and Plagioclase Feldspar (f), Weathered Rock  

Fragments (wrf), and Growth in Quartz (qg) Under Cross Polarized Light (XPL) at 

   406 

Plate 3: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) MD  

Showing Quartz (q), Compressed and Fractured Feldspar Grain (fr) with 

 

   407 

Plate 4: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft) 
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 MD, Showing Quartz Crystals with Mineral Growths (Pyrite?) and Calcite (C?) with Columnar 

Non-penetrative Cleavage, Pyrite? Growth in Quartz (g). X40, XPL.

Plate 5: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft) 

MD, Showing Quartz crystals with Mineral Growths (Pyrite?), Calcite (C?) with

 Columnar Non-penetrative Cleavage, and Quartz with Secondary  Recrystallization

 (qc), Under Plane Polarized Light (PPL). Magnification, X40. 

Plate 6: S12D:   Photomicrograph of Sampl

MD Depth, Showing Smoky White Quartz (q), Feldspar (f), Lithic Fragments (rf) and 

Tourmaline Crystal (t), Under Cross Polarized Light (XPL). Magnification, X40.

Plate 7: Photomicrograph of Sample Number S13 at 2328.98 m (7641.00 ft) MD, 

Showing Rounded, Compressed and Fractured Quartz Grains (q), Quartz with Recrystalliaztion 

Rims, and Compressed Lithic Fragment (rf), Quartz with 

Secondary Growth Inclusion (qsc)

at X40 Magnification.  

Plate 8: Plate 9: Photomicrograph of Sample Number

MD, Showing Crystal of a Heavy Mineral, Zircon Under Cross

Light at a Magnification of X10.

Plate 9: Photomicrograph of Sample Number
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MD, Showing Quartz Crystals with Mineral Growths (Pyrite?) and Calcite (C?) with Columnar 

penetrative Cleavage, Pyrite? Growth in Quartz (g). X40, XPL. 

Plate 5: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft) 

artz crystals with Mineral Growths (Pyrite?), Calcite (C?) with

penetrative Cleavage, and Quartz with Secondary  Recrystallization

(qc), Under Plane Polarized Light (PPL). Magnification, X40.   

Plate 6: S12D:   Photomicrograph of Sample Number S12D at 2330.50 m (7646.00 ft) 

MD Depth, Showing Smoky White Quartz (q), Feldspar (f), Lithic Fragments (rf) and 

Tourmaline Crystal (t), Under Cross Polarized Light (XPL). Magnification, X40.

Plate 7: Photomicrograph of Sample Number S13 at 2328.98 m (7641.00 ft) MD, 

Showing Rounded, Compressed and Fractured Quartz Grains (q), Quartz with Recrystalliaztion 

Rims, and Compressed Lithic Fragment (rf), Quartz with  

Secondary Growth Inclusion (qsc), Under Cross Polarized Light (XPL)  

       

Plate 8: Plate 9: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft)

MD, Showing Crystal of a Heavy Mineral, Zircon Under Cross-polarized 

Light at a Magnification of X10.          

Plate 9: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft) MD, 

 

MD, Showing Quartz Crystals with Mineral Growths (Pyrite?) and Calcite (C?) with Columnar 
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Plate 5: S12B:  Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft)  

artz crystals with Mineral Growths (Pyrite?), Calcite (C?) with 

penetrative Cleavage, and Quartz with Secondary  Recrystallization 

   409 

e Number S12D at 2330.50 m (7646.00 ft)  

MD Depth, Showing Smoky White Quartz (q), Feldspar (f), Lithic Fragments (rf) and 

Tourmaline Crystal (t), Under Cross Polarized Light (XPL). Magnification, X40.  410 

Plate 7: Photomicrograph of Sample Number S13 at 2328.98 m (7641.00 ft) MD,  

Showing Rounded, Compressed and Fractured Quartz Grains (q), Quartz with Recrystalliaztion 
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S2 at 2352.75 m (7719.00 ft) 

                    412 

S2 at 2352.75 m (7719.00 ft) MD,  
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Showing Crystals of a Heavy Mineral, Zircon Under Plane

X10.                        

Plate 10: Photomicrograph of Sample Number

Showing Crystals of Heavy Minerals, Zircon, Silimanite, Glauconite and Opaque

 Minerals Under Cross-polarized Light at a Magnification of X40.

Plate 11: Photomicrograph of Sample

 Showing Crystal of a Heavy Mineral, Zircon and Opaque Minerals Under

 Cross-polarized Light at a Magnification of X40.

Plate 12: Photomicrograph of Sample Number

Showing Crystals of Heavy Mineral, Tourmaline and Opaque Minerals under

Cross-polarized Light at a Magnification of X100. 

Plate 13: Photomicrograph of Sample Number

Showing Crystals of Zircon Growths in Quartz Grain and Opaque Mineral Under 

Plane Polarized Light, Magnification X100.

Plate 14: Photomicrograph of Sample Number

 Showing Crystals of Zircon Growths in Quartz Grain and Op

Under Cross Polarized Light, Magnification X100.
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Showing Crystals of a Heavy Mineral, Zircon Under Plane-polarized Light at a Magnification of 

                                       

10: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft) MD, 

Showing Crystals of Heavy Minerals, Zircon, Silimanite, Glauconite and Opaque

polarized Light at a Magnification of X40.  

Plate 11: Photomicrograph of Sample Number S3 at 2351.53 m (7715.00 ft) MD,

Showing Crystal of a Heavy Mineral, Zircon and Opaque Minerals Under 

polarized Light at a Magnification of X40.    

Plate 12: Photomicrograph of Sample Number S4A at 2350.43 m (7711.40 ft) MD

Showing Crystals of Heavy Mineral, Tourmaline and Opaque Minerals under

polarized Light at a Magnification of X100.     

Plate 13: Photomicrograph of Sample Number S4B at 2350.01 m (7710.00 ft) MD, 

rystals of Zircon Growths in Quartz Grain and Opaque Mineral Under 

Plane Polarized Light, Magnification X100.     

Plate 14: Photomicrograph of Sample Number S4B at 2350.01 m (7710.00 ft) MD,

rystals of Zircon Growths in Quartz Grain and Opaque mineral

Under Cross Polarized Light, Magnification X100.    

 

polarized Light at a Magnification of 
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S2 at 2352.75 m (7719.00 ft) MD,  

Showing Crystals of Heavy Minerals, Zircon, Silimanite, Glauconite and Opaque 
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S3 at 2351.53 m (7715.00 ft) MD, 
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S4A at 2350.43 m (7711.40 ft) MD,  

Showing Crystals of Heavy Mineral, Tourmaline and Opaque Minerals under 
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S4B at 2350.01 m (7710.00 ft) MD,  

rystals of Zircon Growths in Quartz Grain and Opaque Mineral Under  

   417 

S4B at 2350.01 m (7710.00 ft) MD, 

aque mineral 

   418 
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Plate 15: Photomicrograph of Sample Number

Showing Crystal of Zircon Weathered and Distorted Due to Transportation in Water

 Prior to Deposition, Under Plane Polarized Light, Magnification X100.

Plate 16: Photomicrograph of Sample Number

Showing Crystals of Zircon, Opaque, Tourmaline and Glauconite(?) Under   

Cross-polarized Light, Magnification X10.

 

 

 

 

 

 

 

 

 

 

 

xl 
 

© Obafemi Awolowo University, Ile-Ife, Nigeria 
For more information contact ir-help@oauife.edu.ng   

Plate 15: Photomicrograph of Sample Number S6A at 2341.34 m (7681.56 ft) MD, 

rystal of Zircon Weathered and Distorted Due to Transportation in Water

Prior to Deposition, Under Plane Polarized Light, Magnification X100. 

Plate 16: Photomicrograph of Sample Number S7A at 2337.33 m (7668.39 ft) MD, 

rystals of Zircon, Opaque, Tourmaline and Glauconite(?) Under   

ification X10.      

 

S6A at 2341.34 m (7681.56 ft) MD,  

rystal of Zircon Weathered and Distorted Due to Transportation in Water 
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S7A at 2337.33 m (7668.39 ft) MD,  

rystals of Zircon, Opaque, Tourmaline and Glauconite(?) Under    
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This study appraised sedimentological and facies architectural controls on reservoirs            of 

Imaemi Field, offshore Niger Delta. This was with a view to incorporating sedimentological and 

facies architectural characteristics in exploring reservoirs and identifying transgressive

regressive sequences. It also intended to generate models of spatial variability of lithofacies 

architecture and petrophysical properties of reservoirs, at             

their association to hydrocarbon distribution. 

Well logs from 25 wells and core samples from 2 wells within the field were used for 

petrophysical, grain size, petrographic and heavy mineral analyses. Sequence boundaries wer

defined by transgressive-regressive technique and stratigraphic sections were built from logs. 

Quantitative lithofacies data yielded shale, sandy shale, silt, shaly sand, silty sand and sand 

occurrences used for sequential indicator simulation. Sequentia

for petrophysical properties and fluid saturation models. 

Eleven sequence boundaries named SB

architectural analysis yielded 24 vertically stacked, youngest to oldest reserv

Sand to Q-Sand) within channel

settings. Traditional reservoir characterization and geostatistical simulations of lithofacies and 

petrophysical properties for H, I, J, L, M 

lenticular sand geometries, shale beds continuity,  intra

(11.00 to 67.00 %), effective porosity  (5.00 to 30.00%), permeability (0.02 to 5949.15 mD), 

pore aperture radii (0.05 to 0.29
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ABSTRACT 

This study appraised sedimentological and facies architectural controls on reservoirs            of 

Imaemi Field, offshore Niger Delta. This was with a view to incorporating sedimentological and 

ies architectural characteristics in exploring reservoirs and identifying transgressive

regressive sequences. It also intended to generate models of spatial variability of lithofacies 

architecture and petrophysical properties of reservoirs, at             sub-interwell scale and related 

their association to hydrocarbon distribution.  

Well logs from 25 wells and core samples from 2 wells within the field were used for 

petrophysical, grain size, petrographic and heavy mineral analyses. Sequence boundaries wer

regressive technique and stratigraphic sections were built from logs. 

Quantitative lithofacies data yielded shale, sandy shale, silt, shaly sand, silty sand and sand 

occurrences used for sequential indicator simulation. Sequential Gaussian simulation was used 

for petrophysical properties and fluid saturation models.  

Eleven sequence boundaries named SB-1 to SB-11 were delineated in the field. R

architectural analysis yielded 24 vertically stacked, youngest to oldest reserv

Sand) within channel-fill, abandonment phase, delta plain and prodelta depositional 

settings. Traditional reservoir characterization and geostatistical simulations of lithofacies and 

petrophysical properties for H, I, J, L, M and N-Sands showed lithofacies spatial distribution, 

lenticular sand geometries, shale beds continuity,  intra-reservoir flow barriers, shale volume 

(11.00 to 67.00 %), effective porosity  (5.00 to 30.00%), permeability (0.02 to 5949.15 mD), 

radii (0.05 to 0.29 m ), effective pore radii (20.57 to 206.57

 

This study appraised sedimentological and facies architectural controls on reservoirs            of 

Imaemi Field, offshore Niger Delta. This was with a view to incorporating sedimentological and 

ies architectural characteristics in exploring reservoirs and identifying transgressive-

regressive sequences. It also intended to generate models of spatial variability of lithofacies 

interwell scale and related 

Well logs from 25 wells and core samples from 2 wells within the field were used for 

petrophysical, grain size, petrographic and heavy mineral analyses. Sequence boundaries were 

regressive technique and stratigraphic sections were built from logs. 

Quantitative lithofacies data yielded shale, sandy shale, silt, shaly sand, silty sand and sand 

l Gaussian simulation was used 

11 were delineated in the field. Reservoir 

architectural analysis yielded 24 vertically stacked, youngest to oldest reservoir bodies       (A-

fill, abandonment phase, delta plain and prodelta depositional 

settings. Traditional reservoir characterization and geostatistical simulations of lithofacies and 

Sands showed lithofacies spatial distribution, 

reservoir flow barriers, shale volume 

(11.00 to 67.00 %), effective porosity  (5.00 to 30.00%), permeability (0.02 to 5949.15 mD), 

), effective pore radii (20.57 to 206.57 m ) and hydrocarbon 
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saturation (18 to 82%) distribution. Gas and oil saturation up to 82.00% were associated with 

cleaner sand intervals, except in M

(32.00%) in shale-rich portions was due to high surface area, low effective porosity, excessive 

percentage bond water and low pore aperture radii. Pore aperture radii (r) values less than 0.10

m  indicated wet intervals, while 0.10

Compartmentalized pools in the reservoirs reflected lithofacies distribution and highlighted 

hydrocarbon-bypassed prone zones in the six sand bodie

occurred to the northwest, southwest and southeast of the area.

The study concluded that, the spatial distribution of lithofacies and petrophysical properties were 

related and influenced hydrocarbon distribution. 
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saturation (18 to 82%) distribution. Gas and oil saturation up to 82.00% were associated with 

cleaner sand intervals, except in M-Sand, where irregularity occurred; while low saturation 

rich portions was due to high surface area, low effective porosity, excessive 

percentage bond water and low pore aperture radii. Pore aperture radii (r) values less than 0.10

indicated wet intervals, while 0.10 m  and above depicted hydrocarbon presence. 

Compartmentalized pools in the reservoirs reflected lithofacies distribution and highlighted 

bypassed prone zones in the six sand bodies studied. Reserve growths potential 

occurred to the northwest, southwest and southeast of the area. 

The study concluded that, the spatial distribution of lithofacies and petrophysical properties were 

related and influenced hydrocarbon distribution.  
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where irregularity occurred; while low saturation 

rich portions was due to high surface area, low effective porosity, excessive 
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CHAPTER ONE: INTRODUCTION

1.0:  Preamble 

The science of exploration and production of petroleum has advanced steadily, prompting 

hydrocarbon search in the ultra

onshore and shallow offshore fields are maturing, while major proportions may not be viable, 

compelling checks of conventional and emerging field evaluation practices. Earth scientists 

therefore, are faced with the task of understanding and integrating the

spatial reservoir sedimentological and petrophysical properties in relation to contained fluid, 

addressed in this study. Imaemi Field was discovered in 1968, offshore western Niger Delta. It 

has a surface area              of 5

informally named “Imaemi Field” due to proprietary reasons, while the actual location is 

retained.  

It is increasingly obvious that conventional approach alone rarely resolves reservoir     

lithofacies micro-scale architecture, petrophysical properties and associated fluid spatial 

distribution. This therefore, necessitated integration of traditional techniques with geostatistical 

simulations to unveil the spatial and regionalized distrib

even at sub-interwell scale in the field. 

 

 

 

1 
 

© Obafemi Awolowo University, Ile-Ife, Nigeria 
For more information contact ir-help@oauife.edu.ng   

CHAPTER ONE: INTRODUCTION 

The science of exploration and production of petroleum has advanced steadily, prompting 

hydrocarbon search in the ultra-deep offshore basins and other hostile environments. Discovered 

onshore and shallow offshore fields are maturing, while major proportions may not be viable, 

compelling checks of conventional and emerging field evaluation practices. Earth scientists 

therefore, are faced with the task of understanding and integrating the length

spatial reservoir sedimentological and petrophysical properties in relation to contained fluid, 

addressed in this study. Imaemi Field was discovered in 1968, offshore western Niger Delta. It 

has a surface area              of 54.81 km2 (21.16 mi2) in 9.14 m (29.99 ft) water depth and is here 

informally named “Imaemi Field” due to proprietary reasons, while the actual location is 

It is increasingly obvious that conventional approach alone rarely resolves reservoir     

scale architecture, petrophysical properties and associated fluid spatial 

distribution. This therefore, necessitated integration of traditional techniques with geostatistical 

simulations to unveil the spatial and regionalized distribution of geologic properties and fluid, 

interwell scale in the field.  

 

The science of exploration and production of petroleum has advanced steadily, prompting 

deep offshore basins and other hostile environments. Discovered 

onshore and shallow offshore fields are maturing, while major proportions may not be viable, 

compelling checks of conventional and emerging field evaluation practices. Earth scientists 

length-scale variability of 

spatial reservoir sedimentological and petrophysical properties in relation to contained fluid, 

addressed in this study. Imaemi Field was discovered in 1968, offshore western Niger Delta. It 

) in 9.14 m (29.99 ft) water depth and is here 

informally named “Imaemi Field” due to proprietary reasons, while the actual location is 

It is increasingly obvious that conventional approach alone rarely resolves reservoir          

scale architecture, petrophysical properties and associated fluid spatial 

distribution. This therefore, necessitated integration of traditional techniques with geostatistical 

ution of geologic properties and fluid, 
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 1.1: Statement of Problem 

The spatial distribution of indeterminate sedimentological facies and petrophysical properties, 

such as pore aperture size and 

reservoirs. Conventional reservoir characterization methods alone rarely provide field

distribution of these properties in undrilled areas. 

integrated approach that combines conventional and geostatistical estimation methods to address

their spatial variability in reservoirs; hence this study.

1.2: Research Objectives:

The specific objectives are to 

(a) present an integrated technique that i

facies architectural controls in field management;

(b) elucidate detailed architecture of reservoirs in Imaemi Field; unveil field

architectural stacking pattern and distribution of the reservoirs;

(c) quantitatively characterize the distribution of geologic facies and reservoir petrophysical 

properties for geostatistical modelling at sub

(d) construct three-dimensional geostatistical models or realizations based on quantitative 

facies architectural analysis and petrophysical data, depicting heterogeneity at sub

interwell scale; and  
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spatial distribution of indeterminate sedimentological facies and petrophysical properties, 

pore aperture size and permeability, dictate hydrocarbon distribut

Conventional reservoir characterization methods alone rarely provide field

distribution of these properties in undrilled areas. There is, therefore, the 

oach that combines conventional and geostatistical estimation methods to address

variability in reservoirs; hence this study. 

Research Objectives: 

 

present an integrated technique that incorporates the significance of 

facies architectural controls in field management; 

elucidate detailed architecture of reservoirs in Imaemi Field; unveil field

architectural stacking pattern and distribution of the reservoirs; 

ntitatively characterize the distribution of geologic facies and reservoir petrophysical 

properties for geostatistical modelling at sub-interwell scale; 

dimensional geostatistical models or realizations based on quantitative 

tural analysis and petrophysical data, depicting heterogeneity at sub

 

spatial distribution of indeterminate sedimentological facies and petrophysical properties, 

ictate hydrocarbon distribution and recovery in 

Conventional reservoir characterization methods alone rarely provide field-wide 

 need for a simplified, 

oach that combines conventional and geostatistical estimation methods to address 

ncorporates the significance of sedimentological and 

elucidate detailed architecture of reservoirs in Imaemi Field; unveil field-scale 

ntitatively characterize the distribution of geologic facies and reservoir petrophysical 

dimensional geostatistical models or realizations based on quantitative 

tural analysis and petrophysical data, depicting heterogeneity at sub-
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(e) use the geologic models to explain the relationship among geologic facies, petrophysical 

properties and hydrocarbon saturation distribution, relevant for predictive

management in similar geologic setting.

 

1.3 :       Research Justification

The main justifications of this study are that:

1) the indeterminate nature of facies changes, often below well spacing distances are very 

difficult to represent in the horizon

simple approach to capture their variations, even in unsampled locations; 

2) it is impracticable to sample every point in a field (even at a meter length scale) to 

assemble data useful for predictive reserv

derived data and core information to generate field

simulations, hence, presents scientific basis and promising cost effective alternative for 

predictive reservoir management;

3) integration of quantitative facies data and petrophysical properties to assess reservoir 

characteristics and fluid distribution can allow monitoring of reservoir behaviour and 

comparison with models in other basins; 

4) the approach can aid to identify hydroca

proximal to production facilities and could therefore add significantly to production and 

extension of mature field life; and
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use the geologic models to explain the relationship among geologic facies, petrophysical 

properties and hydrocarbon saturation distribution, relevant for predictive

management in similar geologic setting. 

:       Research Justification 

The main justifications of this study are that: 

the indeterminate nature of facies changes, often below well spacing distances are very 

difficult to represent in the horizontal direction. Geostatistical simulations present a 

simple approach to capture their variations, even in unsampled locations; 

it is impracticable to sample every point in a field (even at a meter length scale) to 

assemble data useful for predictive reservoir management. The use of conventional log

derived data and core information to generate field-wide models through geostatistical 

simulations, hence, presents scientific basis and promising cost effective alternative for 

predictive reservoir management; 

ntegration of quantitative facies data and petrophysical properties to assess reservoir 

characteristics and fluid distribution can allow monitoring of reservoir behaviour and 

comparison with models in other basins;  

the approach can aid to identify hydrocarbon-bypassed pay intervals in producing fields, 

proximal to production facilities and could therefore add significantly to production and 

extension of mature field life; and 

 

use the geologic models to explain the relationship among geologic facies, petrophysical 

properties and hydrocarbon saturation distribution, relevant for predictive reservoir 

the indeterminate nature of facies changes, often below well spacing distances are very 

tal direction. Geostatistical simulations present a 

simple approach to capture their variations, even in unsampled locations;  

it is impracticable to sample every point in a field (even at a meter length scale) to 

oir management. The use of conventional log-

wide models through geostatistical 

simulations, hence, presents scientific basis and promising cost effective alternative for 

ntegration of quantitative facies data and petrophysical properties to assess reservoir 

characteristics and fluid distribution can allow monitoring of reservoir behaviour and 

bypassed pay intervals in producing fields, 

proximal to production facilities and could therefore add significantly to production and 



© Obafemi Awolowo University, Ile
For more information contact 

 

5) integration of sedimentological properties, facies arrangement and petrophysical 

properties would enhance effective reservoir management, increase recoverable reserves and 

therefore advance effort to meet the rapidly growing global energy needs. 

This study developed a technique that 

spatial and regionalized distribution of facies, petrophysical properties and fluid necessary for 

prediction of hydrocarbon occurrence even in undrilled areas.

1.4:      Location of Study Area

Imaemi Field is located 8.00 km (4.97 miles) offshore in the western part of the Niger Delta 

within 9.14 m (29.99 ft) water depth. It is within a mega

referred to geologically as the “Inner Trend”, which runs almost pa

an elongated rollover anticlinal structure (Fig.1.1). The field is situated within the 

palaeogeographic zone referred to as the Upper Miocene/Pliocene and Pliocene/Pleistocene of 

the delta formation cycle (Etu

environmental settings namely; onshore, continental shelf and deep offshore, determined by 

major regional faults (Reijers, 1996). The onshore has the Northern depobelt, Greater Ughelli, 

Central Swamp and Coastal Swamp depobelts. The shallow offshore depobelt however, occurs 

in the continental shelf and the deep offshore depobelt follows in the deep waters. The Imaemi 

Field is found in the offshore depobelt, coinciding with the Upper Miocene/Pliocene and 

Pliocene/Pleistocene delta formation cycle. The three major Niger Delta environmental settings 

qualify as extensional, transitional and compressional zones (Fig. 1.2) and are characterized by 

three categories of structural styles, namely; growth faults, diapi
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integration of sedimentological properties, facies arrangement and petrophysical 

properties would enhance effective reservoir management, increase recoverable reserves and 

therefore advance effort to meet the rapidly growing global energy needs.  

This study developed a technique that would foster the production of geologic models that 

spatial and regionalized distribution of facies, petrophysical properties and fluid necessary for 

prediction of hydrocarbon occurrence even in undrilled areas.  

1.4:      Location of Study Area 

Imaemi Field is located 8.00 km (4.97 miles) offshore in the western part of the Niger Delta 

within 9.14 m (29.99 ft) water depth. It is within a mega-structural framework commonly locally 

referred to geologically as the “Inner Trend”, which runs almost parallel to the coastline, along 

an elongated rollover anticlinal structure (Fig.1.1). The field is situated within the 

palaeogeographic zone referred to as the Upper Miocene/Pliocene and Pliocene/Pleistocene of 

the delta formation cycle (Etu-Efeotor, 1997). The Niger Delta has five depobelts in three major 

environmental settings namely; onshore, continental shelf and deep offshore, determined by 

major regional faults (Reijers, 1996). The onshore has the Northern depobelt, Greater Ughelli, 

oastal Swamp depobelts. The shallow offshore depobelt however, occurs 

in the continental shelf and the deep offshore depobelt follows in the deep waters. The Imaemi 

Field is found in the offshore depobelt, coinciding with the Upper Miocene/Pliocene and 

ocene/Pleistocene delta formation cycle. The three major Niger Delta environmental settings 

qualify as extensional, transitional and compressional zones (Fig. 1.2) and are characterized by 

three categories of structural styles, namely; growth faults, diapirs and toe
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