

SEDIMENTOLOGICAL AND FACIES ARCHITECTURAL CONTROLS ON HYDROCARBON-BEARING INTERVALS IN PARTS OF THE NIGER DELTA, NIGERIA

BY

UBULOM UBULOM UBULOM

(B. Sc. GEOLOGY, M. Sc. PETROLEUM GEOLOGY/EXPLORATION GEOPHYSICS)

BEING A THESIS IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF DOCTOR OF

PHILOSOPHY (Ph. D.) IN APPLIED GEOLOGY OF THE DEPARTMENT OF

GEOLOGY, FACULTY OF SCIENCE

OF THE OBAFEMI AWOLOWO UNIVERSITY,

ILE-IFE, OSUN STATE, NIGERIA

AUGUST, 2012

CERTIFICATION

This is to certify that this work was carried out by <u>Ubulom</u> Ubulom Ubulom (SCP05/06/H/3402) in the Department of Geology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Osun

State, Nigeria.

Prof. J. I. Nwachukwu

(Supervisor)

Prof. J. O. Ajayi

(Head of Department)

DEDICATION

This work is dedicated to the Almighty God for His special favour and kindness

to me and to my grandmother, late Mrs. Dada Orofori Ijong Ikan who

devoted her life to guide my early steps in life and to rear me.

ACKNOWLEDGMENT

I wish to express my profound gratitude to my amiable and indefatigable supervisor, Professor Joseph I. Nwachukwu, whose encouragement, enthusiasm, moral support, corrections and advice helped to create and metamorphose this thesis to its final state. He offered enormous personal sacrifice, time and effort through the lengthy period of research data acquisition to the analysis stage, interpretation and even the final copy.

I sincerely acknowledge the encouragement from lecturers in the Department who were very friendly. Chiefly, thanks to our former HOD, Dr. O. O. Ocan and his successor, Prof. J. O. Ajayi. I am truly grateful to Profs. S. B. Ojo, M. A. Rahaman, B. D. Ako and M. O. Olorunfemi of Geology Department, as well as Drs. Lawrence Fadiya, A. A. Adepelumi, D. E. Falebita, Alao Olatunbosun and Mr. Ehitua Esiegbe, a Ph.D student in the Department for their affability and moral support. Thanks to Dr. J. A. O. Oyekunle of Chemistry Department for assistance during Soxhlet extraction; my friend, late Benjamin Ikpeme Umoh, and Wachua Obedah Hildi, fellow Ph.D students for mutual encouragement. I am grateful to Mr. A. T. Adesiyan of the Geochemistry laboratory for analytical support. Special tributes to my great and beloved late uncles; Chief Nelson Ikan Mbajah, who led me to start school, Elder Stephen Ikan for immense love and financial support of my education and Chief Maxwell N. Ikan Mbajah, the Mgbugbo Akwan VIII for affection and moral support. I fondly appreciate my Aunt, Mrs. Martha Lewis

Adasi and Uncle, Mr. Monday Ijong Ikan. Their collective efforts and sacrifices have yielded positive results.

I am indebted to Chevron Nigeria Limited for providing the data used for this work, including Figure 1 and to the staff of the Department of Petroleum Resources (DPR) who facilitated data acquisition from Chevron. Special thanks to Mr. Kweku Segoa, the Managing Director of EOGAS Petroleum & Geosciences Ltd, for an opportunity to use the company's Landmark Geographix Workstation for my interpretation work. The numerous authors whose works were consulted are gratefully acknowledged. Thanks to Mr. Johnson Salako, the Managing Director and Mr. Toju Jemide, the Executive Director Finance of Goland Petroleum Dev. Company Ltd for moral support.

My family showed huge support, encouragement and love. I am eternally grateful to my beautiful wife and true friend, Peninah; our lovely children, Awajiomin, Mary, Elizabeth, Stephen-Ikan and Oromimaemi who constantly asked; "Daddy, how is your study?" I treasure your patience and understanding. Special tributes to my Step-Mother, Mrs. Bartha Monday. She steadfastly stood by my hardworking and caring father, Mr. Ubulom Ubulom to start my Secondary School training at that very crucial stage. My dear Cousin, Mr. Edwin E. Ubulom ceased not his words of encouragement and ardent interest, thanks. I appreciate my beloved Cousin and his dear wife, Engr. and Mrs. Leopold S. Ikan; together you are a fountain of love and inspiration. To my beloved sister, Mrs. Ugwem Adasi, Brother Edward, Cousin, Pastor Festus Nathaniel, Mrs. Janet Kyrian, Engr. Nwauche Erastus and all other relations not mentioned here, please accept my appreciation. I humbly acknowledge continuous moral support

and prayers from my Church, Methodist Church Nigeria, Okoro Mbokho, where I was first prayed for at the commencement of my educational programme.

A special tribute to my awesome Grandmother, late Mrs. Dada Orofori Ijong Ikan (Nee, Adasingo). You started it all, after your daughter, Mary's early home call, such that I knew her not; you planted the seed of hard-work, self-confidence, integrity and meekness in me; loved and guided me on the path of excellence. Finally, I ascribe all honour, glory and majesty to my Lord God Almighty. Great is your faithfulness. You oh my Lord, have done to me exceedingly great things, beyond every human imagination. All who shall put their faith in you, will not fail, they are beckons of light and of your faithfulness in their generation and the coming ones.

TABLE OF CONTENTS

Title I	Page	i
Certifi	cation	ii
Dedic	ation	iii
Ackno	owledgement	iv - v
Table	of Contents	vi - xii
List of	f Tables	xiii - xv
List of	f Figures	xvi - xxv
Apper	ndices	xxvi
List of	f Plates	xxvii-xxix
Abstract		
CHAI	PTER ONE: INTRODUCTION	1 - 6
1.0	Preamble	1
1.1	Statement of Problem	2
1.2	Research Objectives	2
1.3	Research Justification	3
1.4	Location of Study Area	4 - 6

CHAPTER TWO: LITERATURE REVIEW		
2.1	Review of Previous Work	7 - 12
2.2	Geological Setting and Tectonic Framework of the Niger Delta	12 - 15
2.3	Niger Delta Stratigraphic and Facies Architectural Pattern Evolution	16 - 22
	2.3.1 Pre-Tertiary Development	16 - 18
	2.3.2 Modern Delta Deposits	18 - 19
	2.3.3 Akata Formation	20
	2.3.4 Agbada Formation	20 - 21
	2.3.5 Benin Formation	22
СНА	PTER THREE: THEORIES AND CONCEPTS	23 - 56
3.1	Shale Volume Models	23 - 27
	3.1.1: V_{sh} Volume Determination	24 - 25
	3.1.2: Clean Formation Model	25 - 26
	3.1.3: The Dual Water Model	26 - 27
	3.1.4: The Effective Water Saturation	27
3.2:	Porosity in Reservoirs	27 - 30
3.3:	Permeability Models	31 - 35

	3.3.1	Empirical Permeability Models	31 - 35
3.4:	Reserv	oir Flow Unit Characterization Techniques	35 - 37
	3.4.1:	Rock Quality Index	35
	3.4.2:	Flow Zone Indicator	36
	3.4.3:	Generalized Technique	37
3.5:	Progre	ssion of Pore Aperture Radii Equations	37 - 41
	3.5.1	Winland R ₃₅ Method	37 - 38
	3.5.2:	Pittman Method	38 - 39
	3.5.3:	Aguilera Method	39
	3.5.4:	Calculation of Pore Throat Aperture from Well Log	39 - 40
	3.5.5:	Effective Pore Aperture from Modified Kozeny-Carmann Equation	n 40 - 41
3.6:	Histori	ical Development of the Concept of Sequence Stratigraphy	41 – 43
3.7:	Seque	nce Types	43 - 45
3.8:	Geosta	tistical Concepts and Applications	46 - 54
	J		
	3.8.1:	The Concept of Geostatistics	46 - 47
	3.8.2:	Geostatistics and Geology	47 - 48

	3.8.3:	Variogram and Variogram Characteristics	49 - 52
		3.8.3.1: Variogram	49
		3.8.3.2: Variogram Characteristics and Model Specification	49 - 52
	3.8.4	Estimation Algorithms	52 - 54
		3.8.4.1: Kriging	53 – 54
3.9:	Geosta	atistical Simulations	54 - 56
CHAPTER FOUR: MATERIALS AND METHODS			57 - 84
	4.1 Materials		57 - 58
	4.2	Methods	59 - 84
		4.2.1 Sedimentologic and Petrographic Analyses	59 - 72
		4.2.1.1 Soxhlet Extraction	62
		4.2.1.2 Grain Size Analysis	62
		4.2.1.3 Emery's Sedimentation Analysis	63 – 68
		4.2.1.4 Pipette Analysis	69 - 70
		4.2.1.5 Heavy Mineral Analysis	70 - 71
		4.2.1.6 Thin Section Petrography	72
	4.3	Delineation of Stratigraphic Sequences and Correlation	72 - 74

OBAFEMI AWOLOWO UNIVERSITY xi

	4.4	Geosta	atistical Data Preparations	75 - 84	
		4.4.1	Raw Data for Geostatistical Analysis	75	
		4.4.2	Geostatistical Data Formatting	75 - 77	
		4.4.3	Quantitative Facies Description	77 - 79	
		4.4.4	Exploratory Data Analysis	79 - 80	
		4.4.5	Cartesian Gridding	81 - 82	
		4.4.6	Variogram Fitting	83	
		4.4.7	Data Kriging for Simulation	83 - 84	
CHAI	CHAPTER FIVE: RESULTS: SEQUENCE STRATIGRAPHY,				
RESE	RVOII	R ARC	HITECTURE AND GEOSTATISTICAL ANALYSIS	85 - 227	
5.1	Seque	nce Stra	atigraphy of Imaemi Field	85 - 90	
5.2	Sedimentology and Reservoir Architecture			91 – 94	
	5.2.1	Imaen	ni Large-scale Architecture	91 - 94	
5.3	H-San	d Reser	voir	95 - 104	
	5.3.1	Stratig	graphic Location	95	
	5.3.2	Log R	esponses	95 - 98	
	5.3.3	Lithol	ogy, Composition and Texture	99	
	5 2 4			00 100	

	5.3.5	Geometry of H-Sand	100 - 102
	5.3.6	Fluid Saturation, Types and Distribution	103 - 104
5.4	I-Sand	Reservoir	105 - 117
	5.4.1	Stratigraphic Location	105
	5.4.2	Log Responses	105 - 108
	5.4.3	Lithology, Composition and Texture	109
	5.4.4	Reservoir Petrophysics	109 - 112
	5.4.5	Geometry of I-Sand	113 - 115
	5.4.6	Fluid Saturation, Types and Distribution	116 - 117
5.5	J-Sand	Reservoir	118 - 127
	5.5.1	Stratigraphic Location	118
	5.5.2	Log Responses	118 - 121
	5.5.3	Lithology, Composition and Texture	122
	5.5.4	Reservoir Petrophysics	122 - 123
	5.5.5	Geometry of J-Sand	123 - 125
	5.5.6	Fluid Saturation, Types and Distribution	126 - 127
5.6	L-Sano	1 Reservoir	128 - 136

	5.6.1	Stratigraphic Location	128
	5.6.2	Log Responses	128 - 130
	5.6.3	Lithology, Composition and Texture	131
	5.6.4	Reservoir Petrophysics	131 - 132
	5.6.5	Geometry of L-Sand	132 - 134
	5.6.6	Fluid Saturation, Types and Distribution	135 - 136
5.7	M-San	d Reservoir	137 - 157
	5.7.1	Stratigraphic Location	137
	5.7.2	Log Responses	137 - 140
	5.7.3	Lithology, Composition and Texture	141 - 145
	5.7.4	Sedimentary Structures	146 - 147
	5.7.5	M-Sand Reservoir Petrography	148 - 151
	5.7.6	Reservoir Petrophysics	152 - 153
	5.7.7	Geometry of M-Sand	153 - 155
	5.7.8	Fluid Saturation, Types and Distribution	156 – 157
5.8	N-San	d Reservoir	158 - 169
	5.8.1	Stratigraphic Location	158

5.8.2	Log Responses	158 - 160
5.8.3	Lithology, Composition and Texture	161
5.8.4	Reservoir Petrophysics	161 - 164
5.8.5	Geometry of N-Sand	165 - 167
5.8.6	Fluid Saturation, Types and Distribution	168 - 169
5.9: Sequentia	l Indicator and Sequential Gaussian Simulations	170 - 227
5.9.1	H-Sand Facies Modelling	170 - 173
5.9.2	H-Sand Petrophysical Simulations	174 - 177
5.9.3	I-Sand Facies Model Simulation	178 - 181
5.9.4	I-Sand Petrophysical Simulation	182 - 187
5.9.5	J-Sand Facies Modelling	188 - 192
5.9.6	J-S Petrophysical Simulations	193 - 195
5.9.7	L-Sand Facies Modelling	196 - 200
5.9.8	L-Sand Petrophysical Simulations	201 - 207
5.9.9	M-Sand Facies Modelling	208 - 212
5.9.10	M-Sand Petrophysical Simulations	213 - 218
5.9.11	N-Sand Facies Modelling	219 - 222
5.9.12	N-Sand Petrophysical Simulations	223 - 227

CHA	PTER SIX: DISCUSSION	228 - 240
6.1:	Depositional Environments	228 - 232
	6.1.1 Prodelta Facies	230
	6.1.2 Delta Plain Facies	230
231		X
	6.1.3 Channel Abandonment Facies:	232
	6.1.4 Channel-fill Facies, Tidal Channel, Distributary Channel and	i.
	Mouth Bar Deposits	232
6.2:	Sub-interwell Spatial Distribution of Reservoir Facies	233 - 236
6.3:	Hydrocarbon Distribution	237 - 240

_

CHAPTER SEVEN: SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS	241 - 246
7.1 Summary	243 - 244
7.2 Conclusions	244 - 245
7.3 Recommendations	246
REFERENCES	247 - 272
APPENDICES	273 – 404

PLATES

405 - 420

MNEMONICS

421 - 424

LIST OF TABLES

Table 2.1: Basin Classification of Bally and Snelson (1980).	15
Table (3.1): Porosity in Sandstone Reservoirs (After Allen, 1982).	30
Table 3.2: A Comparison of System Tract Schemes for a Type 1 Depositional	
Sequence, a Type 2 Depositional Sequence and a Transgressive-Regressive	
Sequence. LST: Lowstand System Tract; TST: Transgressive Systems	
Tract; HST: Highstand Systems Tract; FRST: Forced Regressive Systems	
Tract; FSST: Falling Sea Level Systems Tract; RST: Regressive Systems	
Tract; SB: Sequence Boundary; (T-R): Transgressive-Regressive Sequence	
(Modified from Embry and Johannessen, 1992; Embry, 2002).	45
Table 4.1: Sample Weight Tabulation Showing Percentages of Sand, Silt	
and Clay in Samples of Imaemi-41 and Imaemi-43 Wells.	64
Table 4.2A: Results of Emery's Sedimentation Analysis for Sample Number S1 of	
Imaemi-41 Well, Taken at a Depth of 2356.10 m (7730.00 ft) MD; 3g Weight Used.	65
Table 4.2B: Results of Pipette Analysis for Sample Number S1 of Imaemi-41	
Well, Taken at a Depth of 2356.10 m (7730.00 ft) MD.	65

Table 4.3 Statistical Results Showing the Graphic Mean Values and Verbal	
Descriptions of Imaemi-41 and Imaemi-43 Wells Core Samples.	68
Table 4.4: The Results of Heavy Mineral Separation Analysis, Showing	
Weight and Cumulative Percentage Occurrence in Core Samples of	
Imaemi-41 and Imaemi-43 Wells.	71
Table 4.5: The Geostatistical Library (GSLIB) Format of H-Sand Quantitative	
Facies Data Used for Lithofacies Simulation.	78
Table 5.1 Stratigraphic Location of H-Sand Showing its Tops and Bottoms.	
Note: NetRes is Net Reservoir, NTG is Net-To-Gross, Pay is the Column	
Bearing Hydrocarbon, NTG Pay is Net-To-Gross Pay.	96
Table 5.2: H-Sand Hydrocarbon Contacts Showing Hydrocarbon Distributions.	
Note: ODT is Oil Down To, HC Column is Hydrocarbon Column.	104
Table 5.3: Stratigraphic Locations of I-Sand Showing Tops and Bottoms.	108
Table 5.4: I-Sand Hydrocarbon Contacts Showing Hydrocarbon Distributions.	
Note: HUT is Hydrocarbon Up To, OWC is Oil Water Contact, ODT is Oil Down	
To, GOC is Gas Oil Contact, GDT is Gas Down To, GWC is Gas Water Contact,	
and HC Column is Hydrocarbon Column.	117

Table 5.5: The Stratigraphic Locations of J-Sand Reservoir as Intersected in	
Different Wells, Showing Tops and Bottoms of the Reservoir, Gross Thickness,	
and Net-To-Gross Ratio NTG Averaging 0.78 which Depicts that the Reservoir	
has Excellent Quality in Imaemi Field.	120
Table 5.6: J-Sand Hydrocarbon Contacts Showing its Hydrocarbon Distributions.	
Note: HUT is Hydrocarbon Up To, OWC is Oil Water Contact, ODT is	
Oil-Down-To, GOC is Gas Oil Contact, GDT is Gas Down To, GWC is Gas	
Water Contact and HC Column is Hydrocarbon Column.	127
Table 5.7: The Stratigraphic Locations of L-Sand Reservoir Showing it Tops	
and Bottoms in Imaemi Field.	129
Table 5.8: L-Sand Hydrocarbon Contacts Showing its Hydrocarbon Distribution	
in Imaemi Field.	136
Table 5.9: The Stratigraphic Location of M-Sand, Showing its Tops and	
Bottoms Intersected in Imaemi Field.	138
Table 5.10: M-Sand Hydrocarbon Contacts Showing the Distribution of Oil in	
each Reservoir Interval in a Well, Percentage of Saturation, Contact Type,	
Oil Down to (ODT) and Saturation Columns.	157

Table 5.11: The Stratigraphic Location of N-Sand, Showing its Tops and Bases, Gross Thickness, and its Net-To-Gross (NTG) Ratio in Imaemi Field. 159 Table 5.12: N-Sand Hydrocarbon Contacts Showing the Distribution of Oil in Each Reservoir Interval in a Well, Percentage of Saturation, Contact Type, Oil Down to (ODT) and Saturation Columns.

LIST OF FIGURES

Figure 1.1: Map Showing Part of Niger Delta; Imaemi Field in OML 95,	
Courtesy Chevron Nigeria Ltd.	5
Figure 1.2: Niger Delta Regional Map, Showing Extensional Province on the	
Shelf. (Modified from Tuttle et al., 1999; Corredor et al., 2005; Kostenko et al., 2008).	6
Figure 2.1: Megatectonic Frame: Campanian to Eocene, Showing Prominent	
Bounding Structures of the Niger Delta (After Murat, 1972).	13
Figure 2.2: Stratigraphic Subdivision of Southern Benue Trough (After Petters	
and Ekweozor, 1982).	17
Figure 2.3: Stratigraphic Column Showing the Three Formations of the Niger Delta	
(Modified from Shannon and Naylor, 1989; Doust and Omatsola, 1990; Reijers, 1996).	19
Figure 3.1: Categories of Pore Geometry, Showing the Pore Types and Pore	
Throat. (Modified from Coalson et al., 1985; Aguilera, 2002).	28
Figure 3.2: Omni-directional Variogram of H-Sand Reservoir Facies, Showing the	
Range at 3000, Sill at 0.15 and Zero Nugget Effect.	51
Figure 4.1: Base Map of Imaemi Field, Showing the Location of Platforms from	
which 25 Wells Used in this Research were Drilled and the Surface Positions	

Figure 4.2: Part of Sample Number S9, Showing Typical Millimeter Scale Cross	
Bedding Primary Sedimentary Structure in Oil Bearing M-Sand, Upper Portion	
at 2333.81 to 2334.46 m (7656.87 to 7659.00 ft) MD Depth Range.	60
Figure 4.3: Part of Sample Number S12 within 2330.50 to 2330.73 m (7646.00 to	
7646.74 ft) MD Depth Range, Showing Cross Beddings and Intercalations of 1 to	
2 cm (0.03 to 0.07 ft) Thick Shale Lenses which Constitute Intra-reservoir	
Vertical Flow Barriers.	61
Figure 4.4: Histogram of Sample S1 Particle Size Distribution of Imaemi-41 Well	
at 2356.10 m (7730.00 ft) MD, Showing Bimodal Sizes at $3.00(\phi)$ and	
3.54 (ϕ) (Sand Fractions < 4 ϕ only).	66
Figure 4.5: Cumulative Percentage (Probability Scale) of Sample S1 at 2356.10 m	
(7730.00 ft) MD from Imaemi-41 Well.	67
Figure 4.6: Part of Imaemi-01 Well Log Showing Positions of Flooding	
Surfaces (FS), Maximum Flooding Surfaces (MFS) and Sequence	
Boundaries (SB) Delineated and Picked Using the Transgressive-Regressive	
Method Combined with Gamma Ray, Resistivity and PHIN and RHOB Separations.	74

Figure 4.7: H-Sand Total Porosity (PHIA) Histogram, Showing Porosity Distribution	
in the Reservoir, with 7% Minimum, 39% Maximum, 25% Mean, 28% Upper	
Quartile, 21% Lower Quartile and Variance of 0.0037 Statistically Determined	
from 2153 Data Counts.	76
Figure 4.8 Histogram of I-Sand Reservoir Facies Distribution in Fraction Showing	
0.16 Shale (F01), 0.18 Sandy Shale (F02), 0.09 Silt (F03), 0.04 Shaly Sand (F04),	
0.22 Silty Sand (F05) and 0.31 Sand (F06), an Indication that the Reservoir is of	
Good to Very Good Quality with High Sand Content and Low Silt.	80
Figure 4.9: Cartesian Grid of Imaemi Field in SGeMS Showing Number and	
Dimensions of Cells, Origin Coordinates and the Bounding Box Enclosing all	
Data Points, and Well Locations.	82
Figure 4.10: Kriging Variance Map of Imaemi Field in SGeMS Showing the Data	
Points, and Well Locations.	84
Figure 5.1: The Sequence Stratigraphy of Imaemi Field, Showing 11 Sequence	
Boundaries, SB-1 to SB-11 Picked on Well Logs.	86
Figure 5.2: Stratigraphic Cross-section Along Strike, NW-SE Direction in Imaemi	
Field Showing the Architectural Stacking Pattern of the Reservoirs, Tops and	

Bottoms of Reservoirs and Non-reservoir Units.	93
Figure 5.3: Imaemi Field NNE-SSW Dip Cross Section Showing the Field	
Architectural Stacking Pattern, Tops and Bottoms of Reservoirs and	
Non-reservoir Units.	94
Figure 5.4: H-Sand Top True Vertical Depth Subsea (tvdss) Map Showing Depth	
to Top of the Reservoir within the Field.	97
Figure 5.5: NW-SE Cross-Section of H-Sand Reservoir Showing the Stratigraphic	
Position, Shale Lenses Intercalation in Subtly Coarsening Upward Silty to Shaly	
Sand and Hydrocarbon Bearing Segments.	98
Figure 5.6: H-Sand Flow Zone Indicator Map Showing Three Main Flow Zones	
in the SW; NW to SE and NE to Central.	101
Fig. 5.7 H-Sand Gross Interval Map Showing Thickness Distribution in the Field.	102
Figure 5.8: I-Sand Top True Vertical Depth Subsea (tvdss) Map Showing Depth	
to the Top of the Reservoir within the Field.	106
Figure 5.9: NW-SE Cross-section of I-Sand in the Strike Direction, Showing	
Coarsening Upward Sand, Separated Above and Beneath by Marine Shales.	107
Figure 5.10: I-Sand Flow Zone Indicator Map Showing High Trend East-west	

with Values of 2.3 to 2.6 μm , while Poor Flow Zones Occur to the North with	
Values as Low as 1.3 to $1.5 \mu m$.	111
Figure 5.11: I-Sand Reservoir Quality Index (RQI) Map Showing High	
Quality Sand Westward and Eastward.	112
Figure 5.12: I-Sand Gross Interval Map Showing Thickness Distribution in the Field.	114
Figure 5.13: I-Sand Net-To-Gross Map Showing Spatial Distribution of Reservoir	
Quality in the Field with Higher NTG at SW, NE and Lower NTG at NW	115
Figure 5.14: J-Sand Top (tvdss) Map Showing Shallow Depth at the NW and	
Deeper Depth at the South to the Top of the Reservoir within the Field.	119
Figures 5.15: NW-SE Cross Section of J-Sand Reservoir Showing the Stratigraphic	
Position of the Sand and General Coarsening-upward Trend.	121
Figure 5.16 J-Sand Gross Interval Map Showing the Reservoir Thickness	
Variation in Imaemi Field with Greater Thickness at the Northeast and Less	
at the SW.	124
Figure 5.17: J-Sand NTG Map Showing the Reservoir Sand Quality	
Distribution in Imaemi Field with High NTG at the SW and Low at the NW.	125
Figure 5.18: The Cross Section of L-Sand Along the Strike NW-SE Direction	

Showing Coarsening Upward, Gradational Base and Erosional Abrupt Tops in	
Imaemi Field.	130
Figure 5.19: L-Sand Gross Interval Map Showing Less Gross Thickness at the	
SW and Thicker Resevori Section at the SE in Imaemi Field.	133
Figure 5.20: L-Sand Net-To-Gross Map Showing its Sand High Sand	
Quality Distribution at the SW Part of the Field.	134
Figure 5.21: M-Sand Top tvdss Map Showing Shallow Depth to the Reservoir	
Tops at the NW and Deeper Depth at the SE in Imaemi Field.	139
Figure 5.22: NW-SE Cross Section of M-Sand, Showing the Stratigraphic Position	
of the Reservoir, Shale Lenses and the General Sand Development.	140
Figure 5.23: Plot of Graphic Mean of Particle Sizes Against Depth Showing	
Trend of Increase in Graphic Mean with Increasing Depth in Imaemi-41 Well.	142
Figure 5.24 Ternary Diagram of M-Sand Reservoir Showing Content of	
Predominantly Silty Sand to Sandy Shale in Imaemi-41 Well (Modified from	
Tucker, 1991). Note: C is Shale, sC is Sandy Shale, Z is Silt, cS is Shaly Sand,	
sZ is Silty Sand and S is Sand.	143
Figure 5.25: Standard Deviations-bivariates Curve Showing Variation of	

Standard Deviation with Depth in Imaemi-41 Well.	144
Figure 5.26: Plot of Inclusive Graphic Skewness Against Depth Showing	
Increase of Skewness with Depth in Imaemi-41 Well	145
Figure 5.27: Imaemi-41 Well Log Section Showing Sample Locations and a	
Millimetre to Centimetre Thick Shale Lense at the Lower Part of Sample	
Number S9.	147
Figure 5.28 Photomicrograph of Sample Number S1, at Depth of 2356.10 m	
(7730.00 ft) MD, Showing the Overview of Crystal Grains Under Cross	
Polarized Light (XPL). Magnification, X10. Note: q is Quartz, f is Feldspar	
and rf is Rock Fragment.	149
Figure 5.29: Photomicrograph of Sample Number S1 at 2356.10 m (7730.00 ft)	
MD, Showing Crystals of Tourmaline and Probably Zircon Under Cross-polarized	
Light, Magnification x 10. Note: Tm is Tourmaline, Zr is Zircon, Op is Opaque	
Mineral.	150
Figure 5.30: Plot of Heavy Minerals Against Depth Showing Concentration	
Between 2325.62 to 2337.82 m (7630.00 to 7670.00 ft) Depth MD in Imaemi-41	
Well.	151

Figure 5.31: M-Sand Gross Interval Thickness Map Showing Higher Reservoir	
Thickness at the NW and Low Thickness at the SW in Imaemi Field.	154
Figure 5.32 M-Sand Net-To-Gross Map Showing Better Reservoir Sand Quality,	
0.6500 to 0.6625 Around the Southeast and Low Net-To-Gross Ratio of 0.4875	
to 0.5000 Toward the Northwest.	155
Figure 5.33: Cross Section Through N-Sand Along the strike NW-SE Direction,	
Showing the Reservoir Distribution in the Field.	160
Figure 5.34: N-Sand Shale Volume Map Showing Shale Distribution in the	
Reservoir of Imaemi Field.	163
Figure 5.35: N-Sand RQI Map Showing the Spatial Variation in Reservoir Quality	
with High Quality Sand in the SE and Low in the NW.	164
Figure 5.36: N-Sand Gross Interval Map Showing Gross Reservoir Thickness	
Distribution in Imaemi Field with Thicker Section in the SW and Thinner at the NW.	166
Figure 5.37: N-Sand Net-To-Gross Map Showing the Reservoir Quality Distribution	
in Imaemi Field with High Sand Quality in the East and Low at the Northwest.	167
Figure 5.38: H-Sand Facies Simulation Model (Realization-0) Showing the	
Facies Distribution in the Reservoir. Note: 1= Shale, 2 = Sandy Shale, 3 = Silt,	

4 = Shaly Sand, $5 =$ Silty Sand and $6 =$ Sand	171
Figure 5.39: H-Sand Facies Simulation Model (Realization-4) Showing the	
Predominant Silty Sand, Sandy Shale and Shale with other Facies.	172
Figure 5.40: H-Sand Facies Simulation Model (Realization-5) Showing	
Predominant Silty Sand, Sandy Shale and Shale with other Facies.	173
Figure 5.41 H-Sand RQI Model (Realization-5) Showing the Reservoir Quality	
Distribution in Imaemi Field.	175
Figure 5.42: H-Sand Hydrocarbon Saturation Model (Realization-4) Showing	
Oil Saturation Distribution in Imaemi Field.	176
Figure 5.43: H-Sand Hydrocarbon Saturation Model (Realization-5) Showing	
Hydrocarbon Pools Separated by Water Wet Zones.	177
Figure 5.44: I-Sand Facies Simulation Model (Realization-0) Showing	
the Different Lithofacies Architecture and Shale Barriers.	179
Figure 5.45: I-Sand Facies Simulation Model (Realization-2) Showing	
the Reservoir Lithofacies Distribution in Imaemi Field.	180
Figure 5.46: I-Sand Facies Simulation Model (Realization-5) Showing Mainly Sand	
Facies to the NW-NE and to the Southwest.	181

Figure 5.47: I-Sand PHIA Model (Realization-5) Showing the Spatial Distribution	
of Total Porosity in the Reservoir of Imaemi Field.	183
Figure 5.48: I-Sand PHIE Model (Realization-5) Showing the Spatial	
Distribution of Effective Porosity in the Reservoir of Imaemi Field.	184
Figure 5.49: I-Sand Effective Pore Radii Model (Realization-5), Showing	
Spatial Distribution of Effective Pore Radii in the Reservoir of Imaemi Field.	185
Figure 5.50: I-Sand Hydrocarbon Saturation Model (Realization-2), Showing	
Water Saturation, Sw and Hydrocarbon Saturation in the Reservoir of Imaemi Field.	186
Figure 5.51: I-Sand Hydrocarbon Saturation Model (Realization-5), Showing	
Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.	187
Figure 5.52: Histogram of J-Sand Reservoir Facies Distribution in Fraction	
Showing 0.11 Shale (F01), 0.21 Sandy Shale (F02), 0.10 Silt (F03), 0.02 Shaly	
Sand (F04), 0.27 Silty Sand (F05) and 0.28 Sand (F06), an Indication that the	
Reservoir is of Good to Very Good Quality with High Sand Content and Low Silt.	189
Figure 5.53: J-Sand Facies Simulation Model (Realization-0), Showing	
Lithofacies Distribution and Architecture in the Reservoir.	190
Figure 5.54: J-Sand Facies Simulation Model (Realization-2), Showing Dominant	

Silty Sand and Sand with other Lithofacies Architecture.	191
Figure 5.55: J-Sand Facies Simulation Model (realization-5) Showing the	
Architectural Association of Component Facies.	192
Figure 5.56: J-Sand Hydrocarbon Saturation Model (Realization-2), Showing	
Hydrocarbon and Water Saturation Distribution in the Reservoir.	194
Figure 5.57: J-Sand Hydrocarbon Saturation Model (Realization-5), Showing	
High Hydrocarbon Saturation to the Northwest and to the Southwest Section of the	
Field.	195
Figure 5.58: Histogram of L-Sand Reservoir Facies Distribution in Fraction	
Showing 0.21 Shale (F01), 0.16 Sandy Shale (F02), 0.13 Silt (F03), 0.06 Shaly	
Sand (F04), 0.23 Silty Sand (F05) and 0.21 Sand (F06), an Indication that the	
Reservoir is of Good to Very Good Quality with High Sand and Shale Content	
and Low Silt.	197
Figure 5.59: L-Sand facies simulation model (realization-0) showing lithofacies	
distribution in the reservoir.	198
Figure 5.60: L-Sand Facies Simulation Model (Realization-2), Showing the	
Lithofacies Architecture in the Reservoir.	199

Figure 5.61: L-Sand Facies Simulation Model (Realization-5), Showing	
Sub-interwell Scale Spatial Distribution of Lithofacies in the Reservoir.	200
Figure 5.62: L-Sand PHIA Model (Realization-0), Showing the Spatial Distribution	
of Total Porosity in the Reservoir.	202
Figure 5.63: L-Sand PHIA Model (Realization-5), Showing Spatial Distribution	
of High Total Porosity as Bright Spots in the Reservoir.	203
Figure 5.64: L-Sand Effective Pore Radii Model (Realization-5), Showing	
the Spatial Distribution of Effective Pore Radii in the Reservoir.	204
Figure 5.65: L-Sand Hydrocarbon Saturation Model (Realization-0), Showing	
the Spatial Distribution of Hydrocarbon and Water Saturation in the Reservoir.	205
Figure 5.66: L-Sand Hydrocarbon Saturation Model (Realization-2), Showing	
the Spatial Distribution of Hydrocarbon Saturation to the Northwest and to the	
Southwest Section of the Reservoir.	206
Figure 5.67: L-Sand Hydrocarbon Saturation Model (Realization-5), Showing	
the Spatial Distribution of Hydrocarbon Saturation at the Southwest, Northwest	
and Little to the Southeast Sections of the Reservoir.	207
Figure 5.68: Histogram of M-Sand Reservoir Facies Distribution in Fraction	

Showing 0.22 Shale (F01), 0.21 Sandy Shale (F02), 0.18 Silt (F03), 0.10 Shaly	
Sand (F04), 0.26 Silty Sand (F05) and 0.02 Sand (F06), an Indication that the	
Reservoir is of Low Quality with High Shale and Low Sand Content.	209
Figure 5.69: M-Sand Facies Simulation Model (Realization-0), Showing	
the Spatial Distribution of the Different Facies Including Shale Barriers in	
Imaemi Field.	210
Figure 5.70: M-Sand Facies Simulation Model (Realization-2) Showing	
the Reservoir Different Lithofacies Architecture in the Field.	211
Figure 5.71: M-Sand Facies Simulation Model (Realization-5) Showing the Different	
Facies Including the Dominant Silty Sand, Sandy Shale and Shale in the Reservoir.	212
Figure 5.72: M-Sand PHIA Model (Realization-5) Showing Low Overall Total	
Porosity Occurrence in the Reservoir.	214
Figure 5.73: M-Sand Effective Pore Radii Model (Realization-5) Showing	
Spatial Distribution in the Reservoir.	215
Figure 5.74: M-Sand Hydrocarbon Saturation Model (Realization-0) Showing	
Undercharged Reservoir, with Little Hydrocarbon Saturation Occurrences.	216
Figure 5.75: M-Sand Hydrocarbon Saturation Model (Realization-2) Showing	

Spatial Distribution of Hydrocarbon Saturation in an Undercharged Reservoir.	217
Figure 5.76: M-Sand Hydrocarbon Saturation Model (Realization-5) Showing	
Spatial Distribution of Hydrocarbon in an Undercharged Reservoir.	218
Figure 5.77: N-Sand Facies Simulation Model (Realization-0) Showing	
the Spatial Distribution of the Different Lithofacies in the Reservoir.	220
Figure 5.78: N-Sand Facies Simulation Model (Realization-2) Showing the	
Different Lithofacies Distribution within the Reservoir.	221
Figure 5.79: N-Sand Facies Simulation Model (Realization-5) Showing	
the Spatial Distribution of the Different Lithofacies Including Shale and Sandy	
Shale Barriers to Vertical Flow of Fluid.	222
Figure 5.80: N-Sand Shale Volume (Vsh) Model (Realization-0) Showing	
Distribution of Shale in the Reservoir. The Cleanest Section of the Reservoir	
with Nearly 40% Shale Volume Occurs to the South and Southwest, while Over	
50% Value are Common Toward the Northwest.	224
Figure 5.81: N-Sand Shale Volume (Vsh) Model (Realization-5) Showing	
Distribution of Shale in the Reservoir.	225
Figure 5.82: N-Sand Hydrocarbon Saturation Model (Realization-0) Showing	

Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest,	
Southeast, and in Traces within Other Sections Indicated by Red Colour and	
Water Intervals by Blue.	226
Figure 5.83: N-Sand Hydrocarbon Saturation Model (Realization-5) Showing	
Undercharged Reservoir. Hydrocarbon Saturation Occurs to the Northwest,	
Southwest, and Traces to the Northeast and other Sections Indicated by Red	
Colour, the Predominant Water Wet Intervals are Indicated as Blue.	227
Figure 6.1: Depositional Environments of Imaemi Field, Showing Depositional	
Trend, Depositional Energy Changes, Facies Association and Sequence Boundaries.	229
Figure 6.2: Stratigraphic Panel Diagram of Imaemi Field, Showing Reservoirs	
Architecture from H-Sand to N-Sand, Viewing from the Southern Direction.	236
OBHTEM	

APPENDICES	273 - 404
Appendix 1: Core Description	273 - 275
Appendix 2: Tabulation of Emery's (1938) Sedimentation and Pipette	A
Analyses Results	276 - 311
Appendix 3: Particle Size Analyses Histograms for Samples of Imaemi-41	
and Imeami-43 Wells (Modality of Histograms is for Sand	
Fractions, $< 4\phi$, Only).	312 - 347
Appendix 4: Probability Plots for Emery Sedimentation and Pipette Analyses	348 - 383
Appendix 5: Particle Size Analyses Statistical Results Tables	384 - 386
Appendix 6: Primary and Heavy Minerals Occurrence in Samples of Imeami-41	
and Imaemi-43 Wells	387
Appendix 7: Well Average Petrophysical Summary	388 - 393
Appendix 8: Facies Variogram Modelling Parameters	394 - 395
Appendix 9: SGeMS Parameter Files for Imaemi Field Reservoirs Facies	
Modelling	396 - 404

405 - 420

LIST OF PLATES: PETROGRAPHIC AND HEAVY

MINERALS PHOTOMICROGRAPHS

Plate 1 Photomicrograph of Sample Number S4A, at 2350.01 m (7710.00 ft) Depth Showing the Overview of Crystal Grains at X10 Magnification Under Cross Polarized Light (XPL). Quartz Grains (q) are Seen as Dominant Grains, Followed by Microcline and Plagioclase Feldspar Crystals (f). Grains are Subrounded to Rounded. 405 Plate 2: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) MD Depth, Showing Quartz (q), and Plagioclase Feldspar (f), Weathered Rock Fragments (wrf), and Growth in Quartz (qg) Under Cross Polarized Light (XPL) at 406 Magnification X40. Plate 3: Photomicrograph of Sample Number S8C at 2335.18 m (7661.34 ft) MD Depth, Showing Quartz (q), Compressed and Fractured Feldspar Grain (fr) with Eroded Edges, Rock Fragments (rf), Under Cross Polarized Light (XPL), Magnification, X40. 407

Plate 4: S12B: Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft)

MD, Showing Quartz Crystals with Mineral Growths (Pyrite?) and Calcite (C?) with Co	olumnar
Non-penetrative Cleavage, Pyrite? Growth in Quartz (g). X40, XPL. 408	
Plate 5: S12B: Photomicrograph of Sample Number S12B at 2330.63 m (7646.41 ft)	
MD, Showing Quartz crystals with Mineral Growths (Pyrite?), Calcite (C?) with	
Columnar Non-penetrative Cleavage, and Quartz with Secondary Recrystallization	
(qc), Under Plane Polarized Light (PPL). Magnification, X40.	409
Plate 6: S12D: Photomicrograph of Sample Number S12D at 2330.50 m (7646.00 ft)	
MD Depth, Showing Smoky White Quartz (q), Feldspar (f), Lithic Fragments (rf) and	
Tourmaline Crystal (t), Under Cross Polarized Light (XPL). Magnification, X40.	410
Plate 7: Photomicrograph of Sample Number S13 at 2328.98 m (7641.00 ft) MD,	
Showing Rounded, Compressed and Fractured Quartz Grains (q), Quartz with Recrystal	liaztion
Rims, and Compressed Lithic Fragment (rf), Quartz with	
Secondary Growth Inclusion (qsc), Under Cross Polarized Light (XPL)	
at X40 Magnification.	411
Plate 8: Plate 9: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft)	
MD, Showing Crystal of a Heavy Mineral, Zircon Under Cross-polarized	
Light at a Magnification of X10.	412
Plate 9: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft) MD,	

Showing Crystals of a Heavy Mineral, Zircon Under Plane-polarized Light at a Magnific	ation of
X10. 413	
Plate 10: Photomicrograph of Sample Number S2 at 2352.75 m (7719.00 ft) MD,	
Showing Crystals of Heavy Minerals, Zircon, Silimanite, Glauconite and Opaque	
Minerals Under Cross-polarized Light at a Magnification of X40.	414
Plate 11: Photomicrograph of Sample Number S3 at 2351.53 m (7715.00 ft) MD,	
Showing Crystal of a Heavy Mineral, Zircon and Opaque Minerals Under	
Cross-polarized Light at a Magnification of X40.	415
Plate 12: Photomicrograph of Sample Number S4A at 2350.43 m (7711.40 ft) MD,	
Showing Crystals of Heavy Mineral, Tourmaline and Opaque Minerals under	
Cross-polarized Light at a Magnification of X100.	416
Plate 13: Photomicrograph of Sample Number S4B at 2350.01 m (7710.00 ft) MD,	
Showing Crystals of Zircon Growths in Quartz Grain and Opaque Mineral Under	
Plane Polarized Light, Magnification X100.	417
Plate 14: Photomicrograph of Sample Number S4B at 2350.01 m (7710.00 ft) MD,	
Showing Crystals of Zircon Growths in Quartz Grain and Opaque mineral	
Under Cross Polarized Light, Magnification X100.	418

Plate 15: Photomicrograph of Sample Number S6A at 2341.34 m (7681.56 ft) MD,
Showing Crystal of Zircon Weathered and Distorted Due to Transportation in Water
Prior to Deposition, Under Plane Polarized Light, Magnification X100.
Plate 16: Photomicrograph of Sample Number S7A at 2337.33 m (7668.39 ft) MD,
Showing Crystals of Zircon, Opaque, Tourmaline and Glauconite(?) Under
Cross-polarized Light, Magnification X10.

420

419

ABSTRACT

This study appraised sedimentological and facies architectural controls on reservoirs of Imaemi Field, offshore Niger Delta. This was with a view to incorporating sedimentological and facies architectural characteristics in exploring reservoirs and identifying transgressiveregressive sequences. It also intended to generate models of spatial variability of lithofacies architecture and petrophysical properties of reservoirs, at sub-interwell scale and related their association to hydrocarbon distribution.

Well logs from 25 wells and core samples from 2 wells within the field were used for petrophysical, grain size, petrographic and heavy mineral analyses. Sequence boundaries were defined by transgressive-regressive technique and stratigraphic sections were built from logs. Quantitative lithofacies data yielded shale, sandy shale, silt, shaly sand, silty sand and sand occurrences used for sequential indicator simulation. Sequential Gaussian simulation was used for petrophysical properties and fluid saturation models.

Eleven sequence boundaries named SB-1 to SB-11 were delineated in the field. Reservoir architectural analysis yielded 24 vertically stacked, youngest to oldest reservoir bodies (A-Sand to Q-Sand) within channel-fill, abandonment phase, delta plain and prodelta depositional settings. Traditional reservoir characterization and geostatistical simulations of lithofacies and petrophysical properties for H, I, J, L, M and N-Sands showed lithofacies spatial distribution, lenticular sand geometries, shale beds continuity, intra-reservoir flow barriers, shale volume (11.00 to 67.00 %), effective porosity (5.00 to 30.00%), permeability (0.02 to 5949.15 mD), pore aperture radii (0.05 to 0.29 μm), effective pore radii (20.57 to 206.57 μm) and hydrocarbon

saturation (18 to 82%) distribution. Gas and oil saturation up to 82.00% were associated with cleaner sand intervals, except in M-Sand, where irregularity occurred; while low saturation (32.00%) in shale-rich portions was due to high surface area, low effective porosity, excessive percentage bond water and low pore aperture radii. Pore aperture radii (r) values less than 0.10 μm indicated wet intervals, while $0.10 \mu m$ and above depicted hydrocarbon presence. Compartmentalized pools in the reservoirs reflected lithofacies distribution and highlighted hydrocarbon-bypassed prone zones in the six sand bodies studied. Reserve growths potential occurred to the northwest, southwest and southeast of the area.

The study concluded that, the spatial distribution of lithofacies and petrophysical properties were related and influenced hydrocarbon distribution.

CHAPTER ONE: INTRODUCTION

1.0: Preamble

The science of exploration and production of petroleum has advanced steadily, prompting hydrocarbon search in the ultra-deep offshore basins and other hostile environments. Discovered onshore and shallow offshore fields are maturing, while major proportions may not be viable, compelling checks of conventional and emerging field evaluation practices. Earth scientists therefore, are faced with the task of understanding and integrating the length-scale variability of spatial reservoir sedimentological and petrophysical properties in relation to contained fluid, addressed in this study. Imaemi Field was discovered in 1968, offshore western Niger Delta. It has a surface area of $54.81 \text{ km}^2 (21.16 \text{ mi}^2)$ in 9.14 m (29.99 ft) water depth and is here informally named "Imaemi Field" due to proprietary reasons, while the actual location is retained.

It is increasingly obvious that conventional approach alone rarely resolves reservoir lithofacies micro-scale architecture, petrophysical properties and associated fluid spatial distribution. This therefore, necessitated integration of traditional techniques with geostatistical simulations to unveil the spatial and regionalized distribution of geologic properties and fluid, even at sub-interwell scale in the field.

1.1: Statement of Problem

The spatial distribution of indeterminate sedimentological facies and petrophysical properties, such as pore aperture size and permeability, dictate hydrocarbon distribution and recovery in reservoirs. Conventional reservoir characterization methods alone rarely provide field-wide distribution of these properties in undrilled areas. There is, therefore, the need for a simplified, integrated approach that combines conventional and geostatistical estimation methods to address their spatial variability in reservoirs; hence this study.

1.2: Research Objectives:

The specific objectives are to

- (a) present an integrated technique that incorporates the significance of sedimentological and facies architectural controls in field management;
- (b) elucidate detailed architecture of reservoirs in Imaemi Field; unveil field-scale architectural stacking pattern and distribution of the reservoirs;
- (c) quantitatively characterize the distribution of geologic facies and reservoir petrophysical properties for geostatistical modelling at sub-interwell scale;
- (d) construct three-dimensional geostatistical models or realizations based on quantitative facies architectural analysis and petrophysical data, depicting heterogeneity at subinterwell scale; and

(e) use the geologic models to explain the relationship among geologic facies, petrophysical properties and hydrocarbon saturation distribution, relevant for predictive reservoir management in similar geologic setting.

1.3 : Research Justification

The main justifications of this study are that:

- the indeterminate nature of facies changes, often below well spacing distances are very difficult to represent in the horizontal direction. Geostatistical simulations present a simple approach to capture their variations, even in unsampled locations;
- 2) it is impracticable to sample every point in a field (even at a meter length scale) to assemble data useful for predictive reservoir management. The use of conventional logderived data and core information to generate field-wide models through geostatistical simulations, hence, presents scientific basis and promising cost effective alternative for predictive reservoir management;
- integration of quantitative facies data and petrophysical properties to assess reservoir characteristics and fluid distribution can allow monitoring of reservoir behaviour and comparison with models in other basins;
- 4) the approach can aid to identify hydrocarbon-bypassed pay intervals in producing fields, proximal to production facilities and could therefore add significantly to production and extension of mature field life; and

5) integration of sedimentological properties, facies arrangement and petrophysical properties would enhance effective reservoir management, increase recoverable reserves and therefore advance effort to meet the rapidly growing global energy needs.

This study developed a technique that would foster the production of geologic models that depict spatial and regionalized distribution of facies, petrophysical properties and fluid necessary for prediction of hydrocarbon occurrence even in undrilled areas.

1.4: Location of Study Area

Imaemi Field is located 8.00 km (4.97 miles) offshore in the western part of the Niger Delta within 9.14 m (29.99 ft) water depth. It is within a mega-structural framework commonly locally referred to geologically as the "Inner Trend", which runs almost parallel to the coastline, along an elongated rollover anticlinal structure (Fig.1.1). The field is situated within the palaeogeographic zone referred to as the Upper Miocene/Pliocene and Pliocene/Pleistocene of the delta formation cycle (Etu-Efeotor, 1997). The Niger Delta has five depobelts in three major environmental settings namely; onshore, continental shelf and deep offshore, determined by major regional faults (Reijers, 1996). The onshore has the Northern depobelt, Greater Ughelli, Central Swamp and Coastal Swamp depobelts. The shallow offshore depobelt however, occurs in the continental shelf and the deep offshore depobelt follows in the deep waters. The Imaemi Field is found in the offshore depobelt, coinciding with the Upper Miocene/Pliocene and Pliocene/Pliocene and Pliocene/Pleistocene delta formation cycle. The three major Niger Delta environmental settings qualify as extensional, transitional and compressional zones (Fig. 1.2) and are characterized by three categories of structural styles, namely; growth faults, diapirs and toe-thrust structures

respectively. Imaemi Field is in the continental shelf, shallow offshore depobelt distinguished by growth faults.