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Abstract 
In this paper we investigate the  global asgmpt,otic stability, boundedness as  well 

as the  ultin1at.e boundedness of solutions to  a general third order nonlinear differential 
equation, using cornplcte Lyapunov funct,ion. 
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1 Introduction 
'I'he concept of s tabi l i ty  a s  well a s  t h e  boundedness of solution is very impor tan t  in  

t h e  theory a n d  applications of differential equat ions.  I t  is also established so  far t h a t  t h e  
most,  cffectivc t o  s t u d y  these concepts (especially s tabi l i ty)  for non-lincar differential 
cquat,ions is t h e  Lyapunov second method .  

Consider t h e  equat ion 

where cp, f a n d  p arc  continuous, a n d  depend o n  t h e  a rguments  displayed explicit,ly. In 
acldition, they a re  such t h a t  t h e  existence, uniqueness a n d  cont inuous dependence o n  initial 
contlition is guaranteecl. 

Boundedness a n d  s tabi l i ty  properties of solut ions t o  various forms of equat ion (1.1)  had 
received considerable a t t en t ion .  Many of these a re  summariscd in [8]. In [ 6 ] ,  2 variants or 
classes of equat ion (1.1) were considered. Also in [7], t h e  aut,hor re-visited t h e  problem of 
f3arbashir1 [2]! \r.herc t h e  equat ion above was consitlered. Barbashin [2]: c a m c  up  with inte- 
resting result on the  equat ion by considering the  equat . ior~ a s  a general third order  nonlinear 
differential equat ion.  His results could no t  handle some of t h e  special cases (or variants) of 
t h c  equat ion a s  we have in [4-'i]. In a n  a t t e m p t  handle a n d  accommodate  a lmos t  all the 
classc:s (and  variants) of equat ion (1.1) ,  Qian  [7],  c a m e  up  with results which simplified the  
theory of Barbash i r~  a n d  thereby making the  result applicable t o  midcr classes or forms of 
equat ion (1.1).  

O u r  a i m  in t,his paper  is t o  fur ther  simplify t,he theorem of Barbashin [2] a n d  Qian [7] 
by extending results in [6]. Here \ire discuss the  boundedness a n d  ul t imately boundedness 
of the  solution t o  equat ion (1.1) o n  a real line. 
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As in [B], equat ion (1.1) is bet ter  hantilcd a s  a system of three-couplecl first order  equa- 
tions by let,ting; 

In th i s  s tudy,  we use a single complete  Lyapunov funct ion t o  achieve our  result.  
For exposit,ory reasons, we give t h e  folloiving definitions: 
Definition 1.1 Let 

x = f ( t ,  x) (1.3)  

be a sys tem of n-first order differential equat ions,  a Lyapunov function V defined as  V : 

I x %!" -, !R is said t o  be  C O M P L E T E  if for X E !Rn 
(i) V ( t ,  X)  > 0; 
(ii) V ( t ,  X )  = 0,  if a n d  only if X = 0 a n d  
(iii) ~ ( t ,  x ) l L 2  < -c  1x1 where c is any  positive cons tan t  a n d  1x1 given by 1x1 = 

n 

( C r:) ' such t h a t  1x1 - m a s  X + m. 
i = l  

Definition 1.2 A Lyapunov function V defined a s  I/ : I x !Rn -+ %! is said t,o be 
I S C O M P L E T E  if for X E %!n (i) a n d  (ii) of t h e  above definition is satisfied. In addi t ion,  

(iii) ~ ( t ,  X ) l L 2  < -c  1x1, where c is a n y  positive constant  a n d  [XI*  given by 1x1- = 
i I 

( C x;) ', where by j ( i  5 j < n) we m e a n  t h a t  n o t  all t h e  variables (otherwise called t h e  
i = l  

trajectories) a re  necessarily involved such t h a t  1x1, -, cm a s  X -- m. 

T h e  part icular  case, according t o  this  work,  is when n = 3.  Therefore we refer t o  (1.2) 
a s  our  system of 3-first order differential equa t ions  a n d  t,he definitions can now be  p u t  a s  
follows: 

Definition 1.3 A Lyapunov function V defined a s  V : I x !R3 + Y? is said t o  be  
COR4PLETE if for X ' E  !R3 

(i) V ( t ,  X)  > 0 ;  
(ii) V ( t ,  X )  = 0 ,  if a n d  only if X = 0 a n d  
(iii) ~ ( t ,  X) l l . z  5 -c 1x1 where c is any  positive constant  a n d  1x1 given by 1x1 = 

3 1 

( C z:)' such t h a t  1x1 -+ co as X --t a. 
t = l  

Definition 1.4 A Lyapunov function V defined as V : I x !R3 + %! 1s said t o  be 

I N C O k I P L E T E  if for X E !X3 (i) a n d  (ii) of t h e  above definition is satisfied. In addi t ion,  
(iii) i / ( t , X ) I 1  2 5 -C 1x1. where c is a n y  positive constant  a n d  1x1, given by 1x1, = 

( z 2  + y2)' ,  o r  1x1. = (r2 + z2)' ,  o r  1x1. = (Y2 + z 2 ) ' ,  o r  1x1. = (r2)', 1x1. = (y2)' .  

o r  XI-  = (r2) '  such t h a t  1x1, - m a s  X 4 oo. 

2 Formulation of Results 
MTe will consider equat ion (1.1) in two m a j o r  !trays a n d  have the  following theorems t o  

prove. 
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Case 1 When p ( t ,  z ,  i, 2 )  0 .  This may he considered as the homogeneous case. 
Theorem 2.1 Let f and p be con~lin7tou.s and let I" = [6, J ]  where J = D a ( 1  - E ) ,  

6 ,  P ,  K and E ore positive constants. Moreover, let the following  condition.^ hold: 
(;) fi = ~ ( T , Y ) - f  ( O , Y  ) € l o = @ ,  x # 0 ,  

(i,) f, = f ( x , " - I ( " 'O)  E I - 
Y 0 - P ,  Y # O >  

(iii) f ( 0 , y )  = f ( x , O )  = 0 and 

(iv) I P ( x >  Y ) I  5 6. 
T h e n  the trivial solution to equation (1 .1 )  is globally asymptotically stable. 

Case 2 When p ( t ,  x ,  x ,  2 )  # 0 .  The  non-homogeneous case 
Theorem 2.2 Suppose that the conditions of the Theorem. 2.1 are satisfied, further, 

Ip( t ;  x ,  x, x)1 5 A,  then there exists a con,stant p(O < p < a) depending only o n  /3, 6 and K 

such that every solution of equation ( 1 . 1 )  satisfies 

for all t L t o ,  where the constant A1 > 0 ,  depends on P , 6 ,  K as ,well as o n  t o ,  x ( t o ) ,  i ( t 0 )  and 
i ( t o ) ;  and the constant A2 > 0 depends o n  P,  6 and K only. 

Theorem 2.3 Following the assumptions of Theorem 2.2 and faking Ip(t; x ,  i, 2)l = 
(1x1 + Iy( + Izl)q5(t), where d ( t )  is a non-negative and continuous function. o f t  and satisfies 
Jot q5(s)ds 5 M < co where M is  a positive constant.  T h e n ,  there exists a constant IYo, 
which depends o n  M ,  I<, , K 2  and t o ,  such that  every solution x ( t )  to  equation ( 1 . 1 )  satisfies 

for .su.ficiently large t .  
Notations Throughout this paper, I<, K O ,  . . . , I<ll denote finite positive constants 

whose magnitudes depend only on the functions d ,  f and P ,  as well as constants a ,  K , :  A 
and 6 .  But they are independent of the solutions t o  ( 1 . 1 ) .  Meanwhile, the occurred each 

t ime is not necessarily the same, but each i = 1 , 2 ,  . .  . retains its identity throughout. 

3 The Function V(z,  y; r )  
The  main tool used in the proof of the theorems is the function V = V ( x ,  y! z ) ,  which 

we obtained below after lengthy algebraic computations 

where a ,  p, E ,  A, K and 6 are all positive for all x ,  y ,  z. 6 > 1 and A = a P ( 6  - 1 ) ( 1  - E ) ' .  

T h e  follo~ving lemmas are to  prove that  V ( x ,  y ,  z )  is indeed a Lyapunov function. 
Lemma 3.1 Subject to the assu.mptions of Theorem 2.1 there exist positive constants 

Ki = K i ( a ,  ,!?, E ,  A, K ,  6 ) ,  i = 1 , 2  such that  

Proof Clearly, V ( 0 ,  0 , O )  = 0 .  
By rearranging ( 3 . 1 )  we have 
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and from equation (3.4), nJe obtain 

and  this  reduces t o  

V > ~ i ' ~ ( r ~  + y2 + z2),  (3.6) 

By the  Schwar t ,~  inequality, 
1 

X Y I  < -1x2 + v21> I - 2 
and so  from equation (3.1) we have 

and  \irhich reduces t h a t  
I f  5 K2(x2  + y2 + z2) :  

Combining equations (3.6) with (3.9), we have 

Th i s  proves Lemma 3.1. 
Lemma 3.2 Suppose that  the  condi t ions  of T h e o r e m  2.1 hold, then there are positzzie 

cartstants = K3(a,  A:6), such that  for n n y  solut ion (x ,  y! 2) t o  s y s t e m  (1.2), 

d 
I - 1  dt  (1 .2)  (x;  y, I) 5 - l i g ( r 2  + yZ + 2 ) .  (3. 11) 

Proof Frorn equations (1.1) and  system (1.2) nre have 
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a\/. a v .  a v .  av nv av 
VI(1.2)  = -Z + 7 - ? j  + -2 = -y + -2 + - ( - P ( ~ : Y ) '  - f ( Z ,  Y)): ax: d y  a- nr n y  a z  

which then  gives 

a6 
If = - { [  ~ ' ( 1  - ~ ) ~ ] x y  + [ ( I  - E ) ( K ~  - ,8(1 - E ) )  + p] yz + z ( - p ( z .  ! / ) I? - f ( . r . ,  y)) 

A 
- E)'(y2 + X Z )  + (1 - &)'P[yz  + Z ( ( D ( X .  Y ) Z  - f ( x ,  Y ) ) ]  

+t;(l - + Y ( P ( ~ ,  W ) Z  - f ( x .  Y ) ) ] ) .  (3.1'2) 

T h e n  by the  conditions o n  f ( r >  Y ) ,  t h a t  is, f("'y)if(o,y) = f x ,  a n d  f ( x ' y ) - f ( " " )  = f y :  a n d  
Y 

after t h e  simplification process, we h a w  

Let. I i 3  5 g, then  if < - I i 3 ( r 2  + y2 + z 2 ) .  T h i s  complctes t,he proof of Lerrlrna 3.2.  
Lemma 3.3 Suppose that the cortditions of Theorem. 2.2 hold, then there exist  positive 

con.stants I<, = ICj (a ,  ,8, E ,  K ,  A , 6 ) ( j  = 4,5), such that for any solution ( z ,  y; z )  to .sy.stem 

( 1 . 2 ) .  

Proof F o l l o \ ~ i n g  the  s a m e  reasoning as t h a t  in Lemrna 3.2, given p # 0, p ( t ;  x ,  N.  z )  = 
P ( t ) ,  we have t h a t  

Also. by the  conditions o n  f ( x ,  y )  a n d  ( ~ ( 2 ,  y )  

where Ii4 = r n a x ( ( 1  - E ) ~ , O ,  tc(1 - E ) ,  I}. Hence 

where I<5 z y. 
Since (1x1 + Iyl + 1.1) < f i ( x 2  + y2 + z2) f r ,  inequality ( 3 . 1 7 )  becomes 

whcrct IC(j = &A's a n d  = LCg. T h i s  complet,es t h e  proof of [,ernma 3.3 .  
From t.he proofs of t h e  lemmas,  \ve establish t ,hat funct ion V ( z ,  y ,  z )  is a. Lyapunov 

funct ion.  
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4 Proof of the Main Results 
We now give the proof of the Theorems stated in Section 2 of this paper. 
Proof of Theorem 2.1 It follon~s from the proof of thc Lemma5 3.1 and 3.2 that  t,he 

trivial solution to  equation (1.1) is globally asymptotically stable. T h a t  is, every solution 
( z ( t ) ,  x ( t ) ,  x ( t ) )  to  system (1.2) satisfies x 2 ( t )  + x 2 ( t )  + r 2 ( t )  -+ 0 as t  + m. 

Proof of Theorem 2.2 From inequality (3.18),  

At the same time, from inequality (3 .6 ) ,  we have 

Let K 4 ( z 2  + y2 + z 2 )  = Kq . E, we have 
1 

where 1\17 = K.4 and K8 = %. So 
K z  K B  

v 5 - 2 1 ~ ~ ~  + K ~ v " P ( ~ ) ~  , 

where IC9 = Therefore 

where I i lo  = 2. Thus inequality (4.3) becomes 

where 

v* = IP(t)l - 1i-1,vf 5 v3 IP(t)l 5 IP(t)l 

When IP(t)l 5 K l o v f ,  
v* 5 0 ,  

and when IP(t)l > K ~ ~ v ~ ,  
1 v* 5 lP(t)l  . -. 

Kl 0 

On substituting inequality (4.6) into (4 .3) ,  we have 

where Kl l  = 2. This implies tha t  

v-+v + 1 i . 9 ~ 4  5 IC1, IP( t ) l .  

Multiplying both sides of inequality (4.8) by e i K 9 ' ,  we have 
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t ha t  is, 
d 

2 - { ~ 3 e 3 ~ 9 ' )  5 e $ K 9 t ~ < 1 1  IP(t)l 
dt 

Integrating both sides of (4.10) from to  to t ,  gives 

which implies that  

Using (3.9) and (3.10) we have 

1 lot l ~ ( T ) l  e ~ K 9 i d r ) 2  for all t 2 l o .  (4.12) 

Thus ,  

where A1 and A2 are constants depending on {1\'1, Kz, (z2(to) + x2(t0) + x2(t0)))  and 
{K1,  1<11) respectively. 

By substituting I<9 = p into inequality (4.13), we have 

which completes the proof. 
Proof of Theorem 2.3 From the function V defined above and the conditions of 

Theorem 2.3, the conclusion of Lemma 3.1 can then be obtaincd, as 

and since P # 0 nre can revise the result of Lemma 3.2, tha t  is, 

and we obtain 

v 5 Ic5(1xl + lyl + I ~ l ) ~ r ( t )  

By Schwa~tz  inequalities on (4.15), we have 
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ivl~ere I<1 = :31i5. From ine~~ual i t ies  (4.14) and (4.16) we have 

Irltcgrating cquation (4.17) from 0 to  t ,  we obtain 

, r l , e re  L\ii = & 
I 

,(, . Using the condition on p ( t ;  x! !I, z )  as stated in Theorem 2.3 .tvc 

By Grownn.al1-I3cllrnan inequality, inequality (4.19) yields, 

This cornpletcs the proof of Theorcm 2.3. 
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