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Abstract
In this paper we investigate the global asymptotic stability, boundedness as well
as the ultimate boundedness of solutions to a general third order nonlinear differential
equation, using complete Lyvapunov function.
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1 Introduction

The concept of stability as well as the boundedness of solution is very important in
the theory and applications of differential equations. It is also established so far that the
most effective method to study these concepts {especially stability) for non-linear differential
equations is the Lyapunov second method.

Consider the equation

z +o(z,z)z + flz, z) = p(t;z, z,z), (-2

where o, f and p are continuous, and depend on the arguments displayed explicitly. In
addition, they are such that the existence, uniqueness and continuous dependence on initial
condition is guaranteed.

Boundedness and stability properties of solutions to various forms of equation (1.1) had
received considerable attention. Many of these are summarised in [8]. In [6], 2 variants or
classes of equation (1.1) were considered. Also in [7], the author re-visited the problem of
Barbashin [2], where the equation above was considered. Barbashin [2], came up with inte-
resting result on the equation by considering the equation as a general third order nonlinear
differential equation. His results could not handle some of the special cases (or variants) of
the cquation as we have in [4-7]. In an attempt handle and accommodate almost all the
classes (and variants) of equation (1.1), Qian [7], came up with results which simplified the
theory of Barbashin and thereby making the result applicable to wider classes or forms of
equation (1.1).

Qur aim in this paper is to further simplify the theorem of Barbashin [2] and Qian [7]
by extending results in [6]. Here we discuss the boundedness and ultimately boundedness
of the solution to equation (1.1) on a real line.
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As in [6], equation (1.1) is better handled as a system of three-coupled first order equa-
tions by letting;

-o(z,y)z — f(z,y) + p(t; z,z,2) (1.2)

In this study, we use a single complete Lyapunov function to achieve our result.
For expository reasons, we give the following definitions:
Definition 1.1 Let
i = f(tz) (1.3)

be a system of n-first order differential equations, a Lyapunov function V defined as V :
I x®R* — R is said to be COMPLETE if for X € "

() V(1 X) > 0;

(i1) V(¢t,X) =0, 1f and only if X = 0 and

(iii) V(t,X)|1.2 < —c|X| where ¢ is any positive constant and |X| given by |X| =

(Zﬁ)%such that | X| — oo as X — oo.

z

i=1
Definition 1.2 A Lyapunov function V defined as V : [ x ®* — R is said to be
INCOMPLETE if for X € ®" (i) and (ii) of the above definition is satisfied. In addition,

(iit) V(t, X)|1.2 € —c|X]|, where ¢ is any positive constant and |X|, given by |X|, =

J 1 . .

( > :zr?) 2, where by j (i < j < n) we mean that not all the variables (otherwise called the
t=1

trajectories) are necessarily involved such that |X|, — co as X — oo.

The particular case, according to this work, i1s when n = 3. Therefore we refer to (1.2)
as our system of 3-first order differential equations and the definitions can now be put as
follows:

Definition 1.3 A Lyapunov function V defined as V : T x % — R is said to be
COMPLETE if for X' € 13

(1) V(t,)() > 0;

(ii) V(¢,X) =0, if and only if X = 0 and

(iii) V(t,X)|1.2 < —c|X| where ¢ is any positive constant and |X| given by |X| =

3 1
(3" 22)7 such that |X| — oo as X — co.
i=1
Definition 1.4 A Lyapunov function V defined as V : I x £ — R is said to be
INCOMPLETE if for X € 3 (i) and (ii) of the above definition is satisfied. In addition,
(i) V(t, X}|1.2 < —c|X|, where ¢ is any positive constant and |X]|, given by |X|, =
(2 +9°)7, or [X[, = (2 +2%) %, or [X[. = (" + ) :

or |X|, = (2%)? such that |X|, — oo as X — oo.

1

P or X, = (22) %, or X[, = (4))7,

2 Formulation of Results

We will consider equation (1.1) in two major ways and have the following theorems to
prove.
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Case 1 When p(t,z,z,2) = 0. This may be considered as the homogeneous case.
Theorem 2.1 Let [ and ¢ be continuous and let Iy = [6,]] where J = fre(l — €),
8,8,k and € are positive constants. Moreover, let the following conditions hold:

(i) fo=LE0SON e 1y =0, 20,

(i) fy = L2 CD e 1y = 5,y #0,

(iii) f(0,y) = f(x,0) =0 and

(iv) le(z, y)| < &
Then the trivial solution to equation (1.1) 1s globally asymptotically stable.

Case 2 When p(t,z,z,Z) # 0. The non-homogeneous case

Theorem 2.2 Suppose that the conditions of the Theorem 2.1 are satisfied, further,
lp(t; 2, 2,2)| < A, then there exists a constant p(0 < p < oo) depending only on 3,6 and
such that every solution of equation (1.1) satisfies

z?(t) + 2°(t) + &%(t) 5(—%“"{:\1 + Ag / |P(7)] %f"’(lr}f

for all t > to, where the constant Ay > 0, depends on 8,6,k as well as on tg, z(1g), 2(tg) and
Z(to); and the constant Ay > 0 depends on 3,6 and x only.

Theorem 2.3 Following the assumptions of Theorem 2.2 and taking |p(t;z,z,2)| =
(Jz| + |y| + |z])o(t), where ¢(t) is a non-negative and continuous function of t and satisfies
fot #(s)ds < M < oo where M is a positive constant. Then, there erists a constant Ky,
which depends on M, K1, Ky and to, such that every solution z(t) to equation (1.1) satisfies

‘/'(I‘)| < Ko, ‘I(/)‘ :i [\’“‘ ‘l([\)‘ : Ko

for sufficiently large t.

Notations Throughout this paper, K, Kop,---, K1} denote finite positive constants
whose magnitudes depend only on the functions ¢, f and P, as well as constants a,x,3, A
and é. But they are independent of the solutions to {1.1). Meanwhile, the K; occurred cach
time is not necessarily the same, but each K; ;7= 1,2, - retains its identity throughout.

3 The Function V(z,y, z)

The main tool used in the proof of the theorems is the function V = V(z,y, z), which
we obtained below after lengthy algebraic computations

s ao (.
2V = — 18

A L
+268(1 — €)%zy + 2(1 — £)? Bz + 2k(1 — €)yz } . (3:1)

where a, 8,€, A,k and § are all positive for all z,y,z. 6 > 1 and A = af(6 — 1)(1 — €)%
The following lemmas are to prove that V(x,y, 2) is indeed a Lyapunov function.
Lemma 3.1 Subject to the assumptions of Theorem 2.1 there exist positive constants
K; = Ki(a,8,e,A,k,68), i = 1,2 such that

Ki(z? +y° 4+ 2%) < V(z,y,2) < [\'3(.1‘1“ L gl ) (3.2)

Proof Clearly, V(0,0,0) = 0.
By rearranging (3.1) we have



q ANN. OF DIFF. EQS. Vol.24

2V = K{[?(lf e+k(1—€)y+2z]* +8°(1—e)’z® +e[(1—e)k+Bely’ —eB(l—e)zz}, (3.3)
. ao 3 . . ) / 1 \2
2V = K{[i(l —e)r + k(1 —e)y+ 2]+ B%e(l —e)x® — Pe(1 — )(, 4 §>
[ - 1 3 50 —€) o .
+e[k(l —€) + Bely” + .}fg } (3.4)

and from equation (3.4), we obtain

h 2 2. 9 %5 ,52 1_5 ) o I
2V > %{.’1“5(1 —e)z” +e[k(l —e€) + Pely” + 3*(1—)~*} (3.5)
and this reduces to
V> Ki(e? + 92+ 2%, (3.6)
where '
. ad . 5 9 :’J(l — g 1
= e e Ace —z e Bl N R Dy ) I e -k ) Y
K 5A mm{f e(l1 —e)%,e[k(1 — ¢) + Pel, l )
By the Schwartz inequality,
Lo o
|zyl < Sle”+ 7,
and so from equation (3.1) we have
;o @0 o Oy SN D 9 2, 9
2V < KI“ (1—¢e)’]z* + {(l—;)u —B(1 —¢)) + /] Y+ z
+66(1 —e)* (2® + ¥*) + (1 — )*B(z* + ) + k(1 — &) (¥* + 2%)}, (3.7)
’\' ) ) 9 b %
W < (‘K({ 262(1 4 B+ k)22 + (1 — €) [w(x + 1) + B(1 — €)(k — 1)] 42
+[1+(1-¢e)(x +B(1 - €))] 2%} (3.8)
and which reduces that
V < Ky(x? +y* + 27), (3.9)
where
Kq = )—0— -max { A2 (1 + B+ k), (1 —¢) [(k + 1)+ B(1 —€)(x — 1)],
(14 (1—¢)(x + B(1—e))] }.
Combining equations (3.6) with (3.9), we have
Ki(z® 4+ v° + 2%) < V(z,9,2) < Ka(2® + ¢* + 2°). (3.10)

This proves Lemma 3.1.
Lemma 3.2 Suppose that the conditions of Theorem 2.1 hold, then there are positive
constants K3 = Ka(a, A, §), such that for any solution (x,y, z) to system (1.2},

. d L,
Vs = = (z,y,2) < —Ka(z? +y* + 2%). (3.11)

Vv
dt 1.2

Proof From equations (1.1) and system (1.2) we have
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v av. .. 9V . 9V av oV
Vi = 8—1T+ 0—Jy+ Fra 073/'*‘ £k + —5)7(—¢(1,,y)~ - f(z, ).

which then gives

ab

V= A= ePley + [(1=2)(6® = 8(1 = ) + B yz + 2(—p(x.p)2 = f(x,))
rO(L =) (y* +z2) + (1 —€)?Blyz + z(p(z, y)z — f(z,y))]
(1= ) + ylo(z,0)7 — flz )]} (3.12)
Then by the conditions on f(z,y), that is, M);—f(o—y) = f,, and ﬁz—y);jﬂl = [y, and
after the simplification process, we have
YV = *”f({,l'.lf‘[/jj + } (3.13)

A

Let K3 < ‘—g, then V < —K3(z? + y? + 2%). This completes the proof of Lemma 3.2.
Lemma 3.3 Suppose that the conditions of Theorem 2.2 hold, then there exist postlive
constants K; = K;(a,8,e,k,A,6)(j = 4,5), such that for any solution (z,y,z) to system

(1.2),
‘I - E 9 9 ) " | /
~V|  (2,y.2) S —Ka(@? 457 +2%) + Ks(lal + [yl + 2] [p(t 2,2, )] (3.14)
(

Vi =
" ’ (1.2)

Proof Following the same reasoning as that in Lemma 3.2, given p £ 0, p(t;z,y.2) =
P(t), we have that

V= L1820 - )Ty + [(1 - e)(6? = A1 = €)) + 8] yz + 2(—p(x, 1)z — f(z,9) + P(1))
+x0(1 — ) (y? + z2) + (1- {)“3'7'[.{/: + z(p(z,y)z — f(z,y) + P(t))]
+r(1 —&)[2* + y(o(z,y)z — f(z,y) 4 [’L/))H. (3.15)

Also, by the conditions on f(z,y) and @(z,y)

Y ao 2, .2 2. _— e A D]
I = —K‘,r +y'+z—((1—€e“Blz+x(l —e)y+ 2)P(t);
ad 5 5 9 _ \ TS 1\
g -—K{,r' +y° 4+ 2% — Ka(|z| + |y| + ‘:‘)/"l‘/]}. (3.16)
where Ky = max{(1 —¢)?8,x(1 —¢),1}. Hence
% < —Ka(z? + y2 + 22) + Ks(|z| + ly| + 1z|) |P(t)], 3.17)
where K5 = —1%“—‘5.
Since (Jz| + |y} + |2]) < V3(2* + y* + z2)2, inequality (3.17) becomes
(“ ) e ] 2 2 r 7.9 2 O\ = 34\ (9 \
= —Ka(z®+y“+2°)+ Ke(z“ +y~ + 2°)2 |P(t)], (3.18)

where Kg = v/3K5 and Ay = K3. This completes the proof of Lemma 3.3.
From the proofs of the lemmas, we establish that function V(z,y,z) 1s a Lyapunov
function.
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4 Proof of the Main Results

We now give the proof of the Theorems stated in Section 2 of this paper.

Proof of Theorem 2.1 It follows from the proof of the Lemmas 3.1 and 3.2 that the
trivial solution to equation (1.1) is globally asymptotically stable. That is, every solution

(z(t), z(t), z(t)) to system (1.2) satisfies z2(t) + z2(¢) + 22(t) — 0 as t — oo.
Proof of Theorem 2.2 From inequality (3.18),
\lx 2 9 2 » 2 9 2\ L
o S ~He(@" T +2%) + Ke(z® +y7 +27)7 |P(t)] -
¢

At the same time, from inequality (3.6), we have
9 o O Z‘ 2
(z°4+y " +2°)2 < (—) :

Let Ka(z? 4+ y® + 2%) = K4 - 1%, we have

m)
1% ;
S < KV 4 KsVE P,
dt
where K7 = %i and Kg = £5. So
? K2

V < —2KoV + KgV'2 |P(2)],

where Kg = L K. Therefore

V+ KoV < =KoV + KgV3 |P(t)| < KsV2{|P(t)| — K10V 3},

where Kip = % Thus inequality (4.3) becomes
V+ KoV < KgV V™
where
V* = |P(t) - KioV? < VTP <|P()]
When |P(1)| < K10V #,
V* <0,

and when |P(t)] > KioV?, 1
VE<IP@) - Koo
On substituting inequality (4.6) into (4.3), we have
V+ KoV < K11 V7 |P(1)]
where K1 = Kﬁfo— This implies that
VoIV 4+ KeVE < Ky |P(1)]
Multiplying both sides of inequality (4.8) by e3K9t we have

e3Kt V-3V 4 KoV3) < e3oKy, |P(2)].
L J

(4.8)
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that is,

d 11 1
2 {VEesf ot} < et Ky |P(1)] &1

Integrating both sides of (4.10) from t¢ to ¢, gives

FL LKAt L igor (
{\'J(Jh"’}znix/ ;"'["1\11![)(7)‘(17- (4.11)
[1

which implies that

or

ri -iK rd LKqtg L ! ) | px Kot

V "([) S € 24 "’{\/ -'([,())l'-’[ oto + Q[\l'_ l/,” ‘1 (T)‘( 2 Ko (IT}
Using (3.9) and (3.10) we have

Ki(z%(t) + 22(t) + #%(t)) < f*v‘f"‘»"{/\t_,(l-'-’(z“) + 22(tg) + 22(2o))ez Kot
1. ! 1Ksr 2
+§1\H |P(7)]|ez"® dr} forallt>1t,. (4.12)
to

Thus,

9 9 a5 l 1 g = 9 5% = L Kat
() +z°(t)+ z2°(¢) < —,{(:_?A“[ {1\3(.1'“(/,(,) + 2%(to) + 2°(0))e 3Ksto
[\]
1 't - 2
+§A’n'/fu|1><T)|m1*v*<1,«} }

nt
< (.—%"’f"[m +.4;;/ ;1’(,-);,.%’\*"(1/—} : (4.13)
Jig

where A; and A, are constants depending on {K), Ko, (z2(to) + #%(to) + #2(10))} and
{K1, K1} respectively.
By substituting Kg = p into inequality (4.13), we have

92

-t
z2(t) + 22(t) + 23(t) < e~ 3t [;11 + A, / |P(7)|e€ AT dr
Jitig

which completes the proof.
Proof of Theorem 2.3 From the function V defined above and the conditions of
Theorem 2.3, the conclusion of Lemma 3.1 can then be cbtained, as

V> Ki(z? + y* + 2°), (4.14)
and since P # 0 we can revise the result of Lemma 3.2, that 1s,
V < —Ka(2? + y* + 2%) + Ks(|z| + |yl + |2]) [P()],

and we obtalin
V < Ks(|zl + |yl + |2])%r(2) (4.15)

By Schwartz inequalities on (4.15), we have
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V < Kz + v + 22)r(t) (4.16)

where Ny, = 35, From inequalities (4.14) and (4.16) we have
‘. /\vxﬂfl \111‘

Integrating equation {4.17) from 0 to ¢, we obtain

where KNyo = 5,\4;1 = 3171‘1* Using the condition on p(t;z,y, 2) as stated in Theorem 2.3 we

have

V(t) < V(0)+ Ky / V(s)r(s)ds (4.19)

By Grownwall-Bellman inequality, inequality (4.19) yields,

s / r(s)ds) (4.20)

‘,.
—
~

| A

et
e

S

This completes the proof of Theorem 2.3.
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