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Abstract: The non-isothermal flow of dusty, viscous, incompressible conduct- 
ing fluid between two oscillatory parallel plates is studied. This flow is described 
by the continuity, momentum and the energy equation, which accounts for the 
heat and mass transfer. Closed-form solutions method initiated by the bound- 
ary conditions were obtained for zero and non-zero pressure gradient. These 
solutions show that the non-isothermal nature of the flow has led to a dramatic 
departure from the isothermal case (see Ajadi [I], Ganguly and Lahiri [6]). The 
solutions were further demonstrated graphically to elucidate the significance of 
parameters such as Prandtl number (P,), the magnetic parameter (Bo)  and the 
Grashoff number (G,) on the velocity profiles. 
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1. Introduction 

The study of non-isothermal convective flow of a fluid-particles system between 
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two parallel plates is still receiving attentions. This may be due to its wide 
range of application in diverse area of science and technology, such as aerospace 
technology, geothermal energy and area which involves heat and mass transfer. 
However, little is known about the effect of temperature on the flow behaviour 
of the particulate flow. In the absence of a radiative heat source (isothermal 
case), Saffman [8] examined the stability of laminar flow of a dusty gas, in order 
to see how dust may affect the critical Reynold's number for transition from 
laminar to turbulent flow. They derived the equation describing the motion of a 
gas carrying small dust particles and the equation satisfied by small disturbance 
of a steady laminar flow. 

Furthermore, the motion of an isothemal dusty viscous incompressible fluid 
between two infinite parallel plates, where both plates are assumed to be oscil- 
lating harmonically with different amplitude and frequency in their own planes 
were considered by Ganguly and Lahiri [6]. They obtained a closed-form so- 
lutions for the velocities. Recently, Ajadi [I] examined the isothermal flow of 
dusty viscous incompressible conducting fluid under the influence of gravita- 
tional force. By using realistic approximation, closed-form solutions for the 
velocity of the fluid and particles were obtained. It was observed that only the 
velocity of the fluid is affected by gravity. 

The influence of temperature resulting from heat transfer on a fluid particle 
system embedded between parallel plates is well documented. For instance, 
Uwanta [12] considered the oscillatory free convection flow of incompressible 
rigid conducting fluid, which contains suspended inert rigid spherical particles 
between two infinite plates. Using the Laplace transform, they showed that 
temperature has significant effect on the fluid velocity but has no effect on 
the particle velocity. Furthermore, Fareo [5] obtained closed-form solutions 
lor isothermal and non-isothermal motion of dusty viscous incompressible fluid 
between two infinite oscillating plates. The solution for the non-isothermal 
case is a departure from the isothermal case. Soundalgekar and Bhat [9] also 
obtained an exact solution of fully developed flow of a viscous incompressible 
fluid in a porous medium between two vertical parallel plates. They showed 
the temperature and velocity profiles graphically. Lyubimov et a1 [7] considered 
the non-isothermal two phase flow in a closed cavity, where one of the phase 
is gas (or liquid) and another phase consist of solid particles. They examined 
the linear stability of the plane parallel flow between differently heated vertical 
plates for the constant gravity field. Singh et a1 [lo] also examined the laminar 
convective flow of an incompressible, conducting, viscous fluid embedded with 
non-conducting dust particles through a vertical parallel plate channel in the 
presence of uniform magnetic field and constant pressure gradient taking volume 
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fraction of dust particles into account, when one plate of the channel is fixed and 
the other is oscillating in time. They examined the effect of various parameters 
on the velocities, skin friction and heat transfer. 

The main objective of this paper is to examine the effect of a radiative heat 
source on a system of laminar, convective particulate flow through a parallel 
plate channel of non-conducting and oscillatory walls. By using an analytical 
framework, the effect of temperature on the fluid and particle velocity have been 
investigated for different parameter regimes and also demonstrated graphically. 

2. Governing Equations 

In cartesian coordinate system, we consider a two dimensional unsteady, incom- 
pressible plane viscous fluid between two parallel plates distance d apart. Let 
x-axis be along the flow of liquid at the fixed wall and y-axis perpendicular to 
it. A uniform magnetic field of strength Bo(= peHo) is applied perpendicular 
to the flow re,' cion. 

In addition, the following assumptions are essential: 

(i) the dust particles are spherical solid, non-conducting, equal size and 
uniformly distributed in the flow, 

(ii) the interactions between the particles, chemical reactions between the 
solid and fluid are neglected, 

(iii) insignificant particle concentration with constant density. 

Thus, the conservation laws for the mass, momentum and energy can be 
written as 

av K 
- + (V.V)V =gP(T -To) + -(U- V), at m 

where U and V denote the local velocity vectors of fluid and dust particles 
respectively, p is the density, p is the static fluid pressure, v is the kinetic 
viscosity, N is the number of dust particles per unit volume and K is a resistance 
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coefficient, Bo is a constant magnetic field parameter, g is the acceleration due 
to gravity, m is the mass of the particles, T is the temperature, To is the 
reference temperature, X is the thermal conductivity and y is the coefficient of 
heat transfer. Since motion is in the x-direction, using the analysis in Ajadi [I], 
the continuity equation (2.2) becomes 

u = ~ ( y ) ,  v = ~ ( y )  and p = p(x). 

Thus the equations (2.1)-(2.5), in one dimensional form bocome 

du - 1 dp d2u O B ~ U  K N  
- - +v--- 
d t  pdx  ay2 p 

+ -(v - U) + gP(T - To), 
P 

(2.6) 

dv - K 
at = gP(T - To) + ;i? (u - v) , 

m d2T 
- = A- - y ( T  - To) 
d t  dy2 

Due to the oscillatory nature of the walls, the relevant boundary condition 
related to this problem are 

= al e - i A ~ t  , y = O ,  u = a 2 e  - iA2t  , y = d ,  

T = s i n h ( ~ y ) ,  t = 0, (2.9) 

T = 0 y = 0, and T = e-i"t sinh(f\d), y = d, t > 0. 

TVe non-dimensionalize the above equations using the variables, 

Thus, the equations (2.6)-(2.8) become 

d - dpl a2d2 O B , ~ ~ ~ U '  K N ~ )  - - -- 
at' +- - +- (v' - ul) + -7- h3gP(Tw - To)T1, (2.10) 

dx' dyl Pu P" 

aT' - X 8 2 ~ ' ~  ?h2 - - -- - T I .  
dtl vpCp ayl v 

After dropping primes in equations (2.10)-(2.12), we have 
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where 
aBoh M = -  K N ~ ~  , Dl = --- 

Kh2 , D 2 = -  7 GT = 
9Ph3 (Tw - To) 

Y 
7 

P "  P "  m v  

The solution of (2.15) is 

T(y, t)  = e-wt sinh(A y), where A = d m .  (2.16) 

In order to solve (2.13) and (2.15) by analytical procedure, there is need to 
consider some particular cases of pressure gradient (2). 

2.1. Constant Pressure (2 = 0) 

Taking derivative of (2.13), we have 

utt = uYyt - Mut + D l  (vt - ~ t )  + GrTt (2.17) 

and expressing as 

[-2 + uyY - M u  + GTT - ~ t ]  
(U - v) = (2.17)~ 

D l  
(2.14) becomes 

D2 dp 
vt = GTT+ -[-- +uyy - M u + G ~ T - u ~ ] .  

Dl dx 
(2.17)b 

Substitute (2 .17)~  into (2.17), we have 

ap utt = uyyt - ( M  + Dl + D 2 ) ~ t  + D2uyy - D ~ M u  - 0 2 -  + GT[Tt + (Dl + Dz)T]. ax 
(2.18) 

Assuming constant pressure (i.e 2 = O), (2.18) reduces to 

utt = uUyt - ( M  + Dl + D2)ut + D2uYy - D ~ M u  + GT[Tt + (Dl + D2)T]. (2.19) 

Due to the nature of the boundary conditions, we take ansatz in the form 

u(y, t) = a1 f (y)e-ixlt + a2g(Y)e-ix2t. (2.20) 

Substituting (2.20) into (2.19), we have 

- i ~ : ~ ~  f e-ixlt - iXga2ge-i'2t - - (-iXlal f r r  e - i A l t  - iX2a2g e 
-ih2t) + 
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Assuming that assuming that X1 = w and collecting terms, we obtain 

ale-ix1t : - iX?al f = -iXlal f f f  + ( M  + D l  + D2)iXlal f + alD2Afff 

a2ePixzt : - iXig = -iX2gff + i ( M  + Dl + D2)BX2g + D2gff - D2Mg. (2.23) 

After rearrangement, equations (2.22) and (2.23) may be written as 

and 

which can be expressed as 

f If + p2 f = G, R  sinh(Ay), 

gff + s 2 g  = 0, 

where, 

(iw - Dl - D2) 
R =  

al(D2 - iX1) ' 

Combining (2.20) and (2.16) 

a1 e -ixlt = al  f ( ~ ) e - ~ ' l ~  + a2g(0)e-ix2t + f (0) = 1, g(0) = 0, 

Let the particular solution (f = fp) of (2.26) be 

fp = Al cosh(8y) + B1 sinh(8y) , 
then 

fff P = Ale2 cosh(8y) + ~ 1 8 ~  sinh(8y). 

After subsitution equation (2.26) becomes 

Ale2 cosh(8y) + ~ 1 8 ~  sinh(0y) + p2(A1 cosh(0y) + B1 sinh(8y)) = GT s i n h ( ~ y ) .  
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Let 0 = A, 

Hence 

Combining the homogeneous and particular solutions, we obtain 

where A2, B2 are constant to be determined. The boundary conditions 

f (0) = 1 and f (d) = 0, 
GrR slnh Ad) we have, A2 = 1 and B2 = -a - p2+A2&. 

sin P ( d  - y) 
= sin P d  

Similarly, 

g(y) = Ccos(Sy) + Dsin(Sy), 

where C and D are constant to be determined. Using the boundary conditions, 

g(0) = 0 and g ( d ) = l ,  
1 we have C = 0 and D = -. Hence, 

sin Sy 
~ ( Y I  = sin- 

Substituting (2.28) and (2.29) into (2.20), we obtain 

sin P ( d  - y) +G.R( sinh(Ay) sin(Pd) - sinh(Ad) sin(Py) 
(P2 + A2) sin(Pd) > 1 

i t  sinSye-ir2t + a2- . (2.30) 
sin S d  

Substituting for u in (2 .17)~  and simplifying, we obtain 

sin(d - y) P 
( M + D ~ - ~ x ~ + P ~ )  

sin P d  
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Solutions (2.30) and (2.31) may be simplified as 

sin P(d  - y) 
u ( ~ l t ) = a l  [ sinPd + G,X (sinh(Ay) sin(Pd) - s i n h ( ~ d )  sin(Py)) I 

sinSy -iA2t 
timese-"It + a2 - sin ~d 1 (2.32) 

Z sin Sy -iA2t 
- s inh(~d)  sin(Py))] e-"It + a2 e 

Dl sin Sd 1 (2.33) 

where 

w = M + D ~ - ~ x ~ + P ~ ,  X =  R 
~2 + ~ 2 '  

Y = Dl + M + A2 - i X 1  and Z = M + Dl + s2 - i ~ 2 .  

We note that these results are generalization of known ones in literature. 
In particular, the special case of isothermal flow, To = Tw = T(i.e GT = O), 
we recovered the result of Ganguly and Lahiri [6] and Ajadi [I]. In particular, 
for lower fixed plate (y = 0) and upper oscillating plate (al = XI  = 0), we 
recovered the results of Ganguly and Lahiri [6] 

sinsy e - i ~ 2 t  a2Z sin Sy - i ~ z t  
u ( Y , ~ )  = a 2 m  and v(y, t)  = -- e 

Dl sinSd 
Conversely, case of lower oscillating plate (y = 0) and upper fixed plate (a2 = 
X1 = 0) 

sin P(d  - y) 
u ( ~ l t ) = a l  [ sinPd + GTX(sinh(Ay) sin(Pd) - sinh(l\d) sin(Py)) e-iA1t I , 
and 

+XY (sinh(Ay) sin(Pd) - sinh(Ad) sin(Py))] e-"lt. (2.35) 

The case in which both plates are non-oscillatory, we obtain the trivial solutions 

u = O  and v = 0 .  (2.36) 
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d p  3. Constant Pressure Gradient (- = Po) 
dx 

At constant pressure gradient, the special case (2.34) does not reflect the heat 
contribution (radiation). This may not be unconnected with the form of ansatz. 
Hence, we are constrained to adopt solutions of the form used by Soundalgekar 
et a1 [9] and Singh et a1 [lo], where one plate is fixed (y = 0) and the other 
(y = d) is oscillating. At the fixed plate the no-slip condition is valid. Thus, 
non-dimensional initial and boundary conditions relevant to the problems are: 

u(y, t)  = V(y, t)  = T(y, t)  = 0, y = 0, t > 0, 

We also propose the form of solutions 

'ZL(Y, t)  = UO(Y) + E U ~ ( Y ) ~ - ~ ~ ,  

Substituting (3.2) into (2.13)-(2.14), we obtain 

T: - P,QTo = 0, 

Ti' - P,(iw - Q)Tl = 0, 

where 
uo = ~1 = vo = v1 = TO = Tl = 0 on y = 0, 
uo = ul = vo = vl =To = Tl = 1 on y = d. (3.9) 

The solutions of (3.3) and (3.4) are 

To = 
sinh my 

Tl = 
sinh ,/my 

sinh m d  ' sinh J m d  
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Then 
sinh m y  sinh J m y  e-iut 

T(yl t ,  = sinh m d  'sinh .\/-d 

Combining (3.6) and (3.7), we have 

The complimentary and particular solutions of (3.11) are 

u ~ , ~  = C2 sinh m y  + D2 cash + E 2 ,  (3.13) 

where 

C2 = 
G r ( l +  $1 Po 

D2 = O  and E2 = --. 
( M  - 1) sinh m d '  M 

Hence, 

Po G,(1+ 2) sinh my 
uo = A n e m u  + - - + (3.14) 

( M  - 1) sinh m d  ' 

Using the boundary conditions (3.9), we have 

A2 = 
l -  M-1 Po and Bz = - - Az. 

2 sinh m d  hif 
Hence, the solution of (3.11) becomes, 

( 1  + 2 )  PO md - sinh f l y  Po 
uo = [l - - -(e- + -(e-mu - l) 

M - 1  M 'I1 sinh a d  M 

G,(1 + E) sinh m y  
(3.15) 

+ M - 1  s i n h m d '  

Inserting (3.15) into (3.6), we obtain 

GT G, sinh m y  v0 = uo + -TO = uo + - 
0 2  D2 sinh m d  ' 

~ ? ( l + & )  PO m d  ~ i n h J ; i ? ~  my 
vo = [l - - -(e- +-(e- -1) 

M - 1  M sinh J;i?d M 
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1 ( 1  + ) s i n h m y  
) 

+ G'(& M - 1 sinh m d '  
(3.16) 

Similarly, combining (3.5) and (3.8), we have 

U: - Lul  = - G T ( l  + Dl )sinh J m y  
(3.17) 

D2 - iw sinh a m d '  

where L = (M + Dl - 3T5 - iw) .  The complimentary and particular solutions 
become 

- 6 y  u l ,  = ~~e~~ + B3e , (3.18) 

u l ,  = E3 sinh d m Y  + F3 cosh d m y .  (3.19) 

We combine ul,, and ~ l , ~ ,  we have 
D Gr ( 1  + D,_'&) sinh &y 

ul = ~~e~~ + ~ 3 e - ~ ~  + (3.20) 
L - Pr( iw - Q )  sinh &d 

where 

Gr(1  + D2-icJ 
F 3 = 0 ,  E 3 = -  

> 
[ L  - Pr( iw  - Q ) ]  sinh a d  ' 

Applying the boundary conditions in (3.9) to (3.20), we have 

D 
l - G ~ ( l f  D2_'h)s inh&y 

U 1  = 
L - Pr( iw  - Q )  sinh a d  

) sinh J ~ Y  GT ( 1  + D2..!h 
(3.21) 

+ L - Pr( iw  - Q )  sinh d m d l  

where 

1 - G T ( l +  D2-iw 
A3 = -B3 = 

1 
[ L  - Pr( iw  - ~ ) ] 2  sinh JLd' 

And from (3.5) 

211 = 0 2  

D2 - iw G~ Tl, 
u1 D2 - iw 

which is explicitly written as 

+ G ,  ] sinh d m y  . (3.22) 
D2 - iw sinh J m d  
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Therefore 

~ ( y ,  t )  = uo + ~ u ~ e - ~ ~ ~ ,  

u =  1- [ M - 1  
- -(e- 

M sinh m d  1) 

Gr(1-k e) sinh m y  
+ M - 1  s i n h m d  

D ) sinh J m y  1 - G r ( l +  D,w) s i n h a y  + Gr(1-l ~ ~ ' w  

L - P r ( i w  - Q) sinh a d  L - P r ( i w  - Q) sinh ~ m d  I 
G r ( l + $ )  - -(e- PO m d ] ~  + -(e-m~ PO - v =  [ [ I -  M - 1  

M sinh a d  M 1) 

1 (1 + ) sinh m g  
+ G T ( ~  M - 1 sinh m d  

x sin. sinh J ~ Y ]  d m d  .-iwt , (3.24) 

sinh m y  sinh J m y  e-wt 

T(y7 t ,  = sinh m d  + 'sinh J m d  
(3.25) 

4. Skin Friction and Heat Transfer (Nusselt Number) 

The shear stress at the boundaries may be evaluated from the skin friction ri, 
while the rate of heat transfer is estimated using the Nusselt number (N). In 
particular, skin frictions of the fluid (2.32), the particle (2.33) and the Nusselt 
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number (2.16) at the boundaries y = 0 and y = d are 

I cos d P  + G,X(A sin P d  - P sinh ~ d )  e-ixlt 

a2S e - i ~ 2 t  +- 
sin Sd 7 (4.1) 

+ G,X(A cosh Ad sin P d  - P sinh Ad cos PA) I 
e-iAlt S cos Sd -iA2t 

f a2 e . (4.2) sin Sd  
The skin friction of the dust particle, 

- PW cos Pd +$ [A + X Y  ( A  sin P d  - P sinh Ad)] e-'"t 7 3  = (E) ,=, - -a1 -- Dl sin P d  Dl 

a2ZS e-iA2f 
+ D~ sin ~d 7 (4.3) 

- P W  G, + - [A cosh Ad + X Y  (A cosh Ad sin P d  
T4 = (2)  y=d - -" ~1 sin ~d Dl 

a 2 Z S  cos Sd -iA2 
-P sinh Ad cos Pd)] e-"lt 

+ Dl sinSd 
e . (4.4) 

The rate of heat transfer is 

Nl = A e-iwt and N2 = A e-i"t cosh(Ad). (4.5) 

As stated earlier, the above results are generalized forms of known ones. The 
special case of a1 = XI = 0, and G, = 0, we recovered all the previous results 
for the ri and N in Ajadi [I] and Ganguly and Lahiri [6]. 

5. Conclussion and Discussion 

We have examined the non-isothermal flow of a dusty incompressible conducting 
fluid between two oscillating parallel walls. We obtained closed-form solutions, 
which apparently show the heat contributions on the fluid and particle veloci- 
ties. Our results show that temperature will definitely affect both the particle 
and fluid velocity silmultaneously, although at different degrees. In particular, 
for zero pressure gradient with solutions (2.30) and (2.31), Figures 1 and 2 
represent the spatial (y) development of the fluid velocity (u), while Figures 
3 and 4 represent the variations in particle velocity (v) with y for some time. 
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Fig. 1 u vs y  Bo = 10,G, = 0  Fig. 2 u vs y Bo = 10, G, = 5 

Fig. 3 v v s y B o = 1 0 , g = 1 0 , G , = 0  Fig. 4 v v s y B o = 1 0 , g = 1 0 , G , = 5  

Fig. 5 u vs y  Bo = 1, P, =0 ,  
G, = 10 

Fig. 6 u vs y  Bo = 1, 
P, = 0.005, G, = 10 
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Fig. 7 v vs y Bo = 1, P, = 0, Fig. 8 v vs y Bo = 1, 
G, = 10 P, = 0.005, G, = 10 

Fig. 9 u vs y Bo = 1, P, = 5.63 x 10 4, Fig. 10 u vs y Bo = 1, 
G, = 0 P, = 5.63 x 10 4, G, = 44.4 

Fig. 11 v vs y Bo = 1, P, = 5.63 x 10 4, Fig. 12 v vs y Bo = 1, 
G, = 0 P, = 5.63 x 1 V 4 ,  G .  = 44.4 
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It was revealed that the non-isothermal (Gr # 0) case has a higher velocity 
profiles than the isothermal case (Gr = 0). Similarly, Figures 5 and 6 represent 
the variation of the fluid velocity (u) with (y), while Figures 7 and 8 represent 
the variations in particle velocity (v) with y for some time. In the presence of 
Prandtl number ( P r  # O),  the velocity profiles is higher than the case when 
P r  = 0. For non-zero pressure gradient, Figures 9 and 10, and Figures 11 and 
12 are graphical demonstration of solutions (3.23) and (3.24) respectively. The 
behaviour of these solutions is also similar to the case of zero pressure gradient. 

We have shown that when heat transfer is involved in a particulate Newto- 
nian fluid system, the velocity of the fluid and particle will increase. This may 
be due to decrease in density resulting from temperature increase. In all the 
cases considered, and at a given space region, the velocities are monotonically 
decreasing function of time ( t ) .  The study would find place in some industrial 
applications such as such as conveyor belt system, hydraulic system, thermal 
explosion. 
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