

STUDIES ON INDIGENOUS ARBUSCULAR MYCORRHIZAL FUNGI FROM A FALLOW FIELD IN ILE-IFE

BY

MOBOLAJI ADENIKE ADENIYI B.Sc (OAU, ILE-IFE) SCP10/11/H/0106

A THESIS SUBMITTED TO THE DEPARTMENT OF MICROBIOLOGY, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, OSUN STATE, NIGERIA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY

2014

AUTHORIZATION TO COPY

OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, OSUN STATE, NIGERIA

HEZEKIAH OLUWASANMI LIBRARY

POSTGRADUATE THESIS

- AUTHOR: Mobolaji Adenike, ADENIYI
- TITLE: Studies on Indigenous Arbuscular Mycorrhizal Fungi from a Fallow Field in Ile-Ife
- DEGREE: Master of Science (M.Sc) Microbiology
- **YEAR:** 2014

I, Mobolaji Adenike ADENIYI, hereby authorize the Hezekiah Oluwasanmi Library to copy my thesis in part or in whole in response to request from individual and / or organization for the purpose of private study or research.

.....

Signature

Date

CERTIFICATION

I certify that this research work was carried out by Mobolaji Adenike ADENIYI (SCP10/11/H/0106), in the Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.

Prof. G.O. Babalola (Supervisor)	Date
Prof. (Mrs.) A.O. Salami (Co-Supervisor)	Date
Dr. D.A. Akinpelu (Ag. Head of Department)	Date

DEDICATION

This work is dedicated to my late father, Rev. (Canon). F.O. Adeniyi, and my mother, Mrs.

I.O. Adeniyi.

ACKNOWLEDGEMENTS

To God be the glory for His grace and mercy. In His loving kindness I have been able to attain this height and greater height He's still taking me.

My sincere appreciation goes to my supervisor, Prof. G.O. Babalola, for training me in the path of hardwork and bringing out the scholarship of this work. The knowledge you imparted in me will forever be appreciated. Also, I sincerely appreciate my Co-Supervisor, Prof. (Mrs.) A.O. Salami; your motherly love, tutelage, encouragements and understanding cannot be underestimated. I'm glad I worked with you. Thank you Ma, for being there for me always.

My unreserved gratitude goes to all the lecturers in the Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria for the knowledge they impacted in me. I'm most grateful to Dr. D.A. Akinpelu (the Head of Department), Dr. M.K. Bakare (the Postgraduate Coordinator), Dr. K.O. Awojobi, Dr. A.O. Shittu, Dr. B.O. Omafuvbe and Prof. K.A. Ako-nai for their concern and words of encouragements during the challenging period of this study. I also appreciate Mrs. O.T. Awotipe, Mrs. A.A. Rafiu, Mrs. E.O. Oyeyemi, who are always willing and ready to offer technical assistance when needed and also the Administrative staff members, Mr. K. Salami, Mrs. M.O. Olanipekun, Mrs. R.O. Osowade who are always prompt in attending to my matters. I'm indebted to my father, Prof. Olu. Odeyemi, who will go any extent to ensure that I'm in the right state to do my work. Your financial assistance, encouragements and fatherly love went a long way in making me attain this height. Thank you Sir, for being a father to me. Also, I appreciate Dr. A.K. Adekunle (Dept. of Crop Production and Protection) for always making his laboratory sieves available when needed and to Mr. Ope Omokungbe, Dr. Richard Akinwale, Mr. Kunle Olawole (in the Department of Crop Production and Protection) and Mr. Tunde Odetoyin (Medical Microbiology), I say thank you for the technical assistance rendered during this study.

My immeasurable appreciation goes to my mother, Mrs. I.O. Adeniyi. Looking back these years, I can boldly say you are a mother indeed. I appreciate all you had to do and the sacrifices you had made to ensure I have this degree. May you live long to eat the fruits of your labour (Amen). To my siblings, Engr. and Mrs. Taiwo Ajayi, Mr. and Mrs. Wole Oladapo, Dr. and Dr. (Mrs.) Olumide Adeniyi, I say thank you for sharing in my low and excited moments during the course of this programme. Your financial support is also appreciated.

I appreciate my friends, Tolulola Mapayi and Yewande Ajao, my big sisters, Sola Adefioye, Yetunde Feruke-Bello, Mrs. C.N. Fakorede and my big brother, Mr. Taiwo Fadare for their love, support and encouragement during the course of this work.

Finally, I want to appreciate my Father and Mother in the Lord, Rev. and Rev. (Mrs.) Olusola Areogun for their ministrations which made me believe I can make it.

> Adeniyi, Mobolaji Adenike 09/05/2014

TABLE OF CONTENTS

Title	Page
Title page	i
Authorization to copy	ii
Certification	iii
Dedication	iv
Acknowledgements	V
Table of Contents	vii
List of Tables	xi
List of Plates	xiii
Abstract	xiv
\mathcal{O}	
CHAPTER ONE: INTRODUCTION	
1.0 Background	1
1.1 Problem Statement	2
1.2 Expected Contribution to Knowledge	3
1.3 Objectives of Study	3
CHAPTER TWO: LITERATURE REVIEW	
2.1 Mycorrhiza	4
2.2 Evolution of Mycorrhiza Fungi	4
2.3 Occurence of Mycorrhizal Association	5
2.4 Types of Mycorrhizae	5
2.4.1 Endomycorrhizae	6
2.4.2 Ectomycorrhizae	6
2.5 Arbuscular Mycorrhiza (AM) Fungi	6
2.5.1 Morphology of AM Fungi	7

2.5.2	Ecology of AM Fungi	8
2.5.2.1	Habitat of AM Fungi	8
2.5.2.2	2 Interaction of AM Fungi with Rhizosphere Organisms	8
2.5.2.3	Interaction with Soil Bacteria	8
2.5.3	Specificity and Host Range of AM Fungi	9
2.5.4	Responses of AM Fungi to Environmental Conditions	10
2.5.5	Developmental Stage in AM Fungi	12
2.5.5.1	Presymbiosis	12
2.5.5.2	2 Symbiosis	13
2.5.6	Reproduction and Life Cycle of AM Fungi	14
2.6	Benefits of AM Symbiosis	15
2.6.1	Nutrient Uptake and Exchange	15
2.6.2	Disease Resistance	17
2.6.3	Colonization of Barren Soil	17
2.6.4	Resistance to Toxicity	18
2.7	Effects of Agricultural Practices on AM Fungi	19
2.7.1	Tillage	19
2.7.2	Phosphorus Fertilizer	19
2.7.3	Perennialized Cropping Systems	19
2.7.4	Improvement of Soil Quality	20
2.8	Plants that form AM Association	20
2.9	Tomato Cultivars	21
2.9.1	Nutritional Value of Tomato Fruits	21
2.9.2	Diseases of Tomatoes	21
2.9.3	Tomato and Sustainable Agriculture	22

CHAPTER THREE: MATERIALS AND METHODS

3.1	Study Area	24
3.2	History of the Study Area	24
3.3	Soil Sampling	24
3.4	Screening for Indigenous AM Fungi Spores	24
3.5	Isolation of AM Fungi Spores	25
3.6	Identification of AM Fungi Spores	25
3.7	Enumeration of Indigenous AM Fungi Spores Isolated from the Sampling	
	Site	26
3.8	Establishment of Trap Culture	27
3.9	Simulated Trial Experiment to Monitor Plant Growth and Fruit Yields	27
3.9.1	Pot Soil Used in the Simulated Trial Experiment	27
3.9.2	Sowing, Transplanting, Stacking and Harvesting of ROMA Tomato Cultivar	27
3.9.3	Experimental Design	28
3.10	Monitoring of Plant Growth and Fruit Yield of ROMA Tomato Cultivar	30
3.10.1	Vegetative Parameters	30
3.10.2	Yield Parameters of Harvested Tomato Fruits	30
3.11	Determination of Mycorrhizal Infection by AM Fungi and Percentage Root Segment Colonized	31
3.12	Chemical Analysis of Soil from Sampling Site	32
3.13	Statistical Analysis	36

CHAPTER FOUR: RESULTS

4.1	Chemical Properties of Soil Collected from the Site of Study	37
4.2	Arbuscular Mycorrhiza Fungi Isolated from the Site of Study	37
4.3	Population Variations of AM Fungi Spore Isolated from the Sampling	g Site 42

4.3.1	Spore Density, Species Richness, Shannon-Wiener Index and Simpson's Index of Soil Samples Collected from the Sampling Site	42
4.3.2	Relative Abundance of the AM Fungi Spore Types	42
4.4	Densities of the Different AM Fungi Spore Types in a Trap Cultivation	43
4.5	Effect of Mycorrhiza Inoculation on Growth Rate of the Tomato Cultivar	48
4.6	Fruits Harvest Parameters	50
4.6.1	Productivity of Fruits Harvested	50
4.6.2	Market Value of Fruits Harvested	50
4.7	Post Harvest Parameters Measured in the Simulated Trial Experiment	54
4.7.1	Arbuscular Mycorrhiza Fungi Spore Yield after Harvest	54
4.7.2	Effect of AM Fungi Combination on Yield	54
4.7.3	Establishment of Mycorrhizal Colonization in Tomato Cultivar Roots	55
4.8	Post Harvest Soil Mineral Contents	55
4.9	Relationship between Fruit Harvest Parameters, Spore Yield, Percentage root Colonization and Soil Nutrient Enrichment	56
CHAPTER FIVE: DISCUSSION 64		
Concl	usion and Recommendation	67
Refere	ences	68
Apper	ndices	79

LIST OF TABLES

Table	Title	Page
1	Actual Treatment and Experimental Content per 4 kg of Sterilized Soil	29
2	Some Chemical Characteristics of the Soil Samples Collected from the	
	Three Plots Sampled on the Site of Study	39
3	Microscopic and Staining Characteristics of the Isolated AM Fungi Spores	40
4a	Spore Density, Species Richness, Shannon-Wiener Index and Simpson's	
	Index of AM fungi Collected from the Three Plots on the Sampling Site	44
4b	Relative Abundance (%) of the AM Fungi Spore Types isolated from the	
	Nine Different Spots on the Sampling Site	45
4bi	Relative Abundance of the Different AM Fungi Spores between	
	Plot Sampled	45
4bii	Total Relative Abundance of the Different AM fungi Spores in all the Soil Samples Collected from the Site of Study	46
5	Densities of the Different AM Fungi Spores in the Trap Culture after	
	14 weeks of Cultivation with Maize Cultivar	47
6	Variations in Growth Rates of Tomato Cultivar Stem Height in Response to the Different Treatments	49
7	Weights, Sizes and Numbers of Tomato Fruits Harvested in the Different Treatments Applied	52
8	Arbuscular Mycorrhiza Fungi Spore in the Different Treatments after	
	Harvest	58
8a	Yield of AM fungi after Harvest	58
8b	Combination Effect Index (CEI) of AM Fungi Spore on Yield	59
9	Percentage Root Colonization of Tomato Crop Cultivar by AM Fungi after Harvest	60
10	Percentage Increase in Soil Nutrient Content of the Post Harvest Pot Soils	62

Table

11

Title	Page
Pearson Correlation Analysis of Fruit Harvest Parameters and Post Harvest Parameters Measured	63

LIST OF PLATES

Plate	Title	Page
la	The Wide View of the Site of Study	38
1b	The Close-Up View of the Host Plant (<i>Pennisetum purpureum</i>) Growing on the Site of Study	38
2	Different Types of AM Fungi Spores Isolated from the Site of Study	41
3	Representative of Tomato Fruit under the Different Treatments at	$\langle \cdot \rangle$
	Harvest	53
4.	Tomato Crop Cultivar with Evidence of AM Fungi Colonization	
	after Harvest in the Different Mycorrhizal Treatments	61
	BHERMANNOLOWN	

ABSTRACT

Arbuscular Mycorrhizal (AM) fungi spore abundance and species composition were assessed on a fallow field in Obafemi Awolowo University Teaching and Research Farm, Ile-Ife, Nigeria. This was with a view to evaluating their potentials for the enhancement of crop yield.

Soil samples were collected randomly from nine (9) different points within the field in March, 2012, before the onset of the rainy season. The soil samples were air-dried and processed for AM fungi spore abundance and species composition. The isolated AM fungi species were affiliated with already described species. The isolated AM fungi species were used to develop AM fungi inoculum and used in simulated trial experiment singly and in combination using tomato cultivar (*Lycopercium* sp.) as test plant. The chemical analysis of the different pot soil was carried out before and after harvest to determine the enrichment of soil nutrient by the different treatments applied.

The AM fungi spore density observed in the field of study ranged between 5-9 spores/g of soil. Three AM fungi spore types, *Glomus mosseae*, *Glomus luteum* and *Glomus viscosum* were isolated from all the soil samples. *G. mosseae* was the most abundant of the three spores with total relative abundance of $66.59 \pm 7.05\%$. *G. luteum* and *G. viscosum* had mean relative abundance of $16.89 \pm 5.18\%$ and $16.52 \pm 3.86\%$ respectively. Mycorrhiza inoculation improved plant growth and fruit yield (g) of tomato cultivar. All the single inoculated mycorrhizal treatments improved fruit yield (g) (*G. mosseae* (63.83 g); *G. luteum* (85.58 g); *viscosum* (66.38g)) than the other treatments. However, not all combinations of AM inoculum were effective in improving plant crop yield. The combination of *G. mosseae* and *G. luteum* was the best combination (56.35 g) and the worst of the combination treatments was the treatment with the

combination *G. mosseae* and *G. viscosum* (24.63 g). The result of this study also revealed that, AM fungus/fungi differ in their ability to enhance soil nutrient enrichment depending on the soil nutrient element being considered and the AM fungus or fungi in combination.

This study concluded that AM fungi improved plant crop yield and also contributed to soil nutrient enrichment.

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Mycorrhizal fungi are ubiquitous in the terrestrial ecosystem (Thorunn and Alastair, 2009) and the most dominant organism among the many microbial community components of the rhizosphere (Chubo *et al.*, 2009). They are symbiotic association of fungi with plants that benefit both partners (Dalpe and Monreal, 2004). Arbuscular Mycorrhiza (AM) fungi are obligatory biotrophic symbionts that occur in nearly all natural and arable soils and commonly colonize roots of many plant species (Smith *et al.*, 1997).

The most commonly known underground symbiotic association between members of phylum Glomeromycota and roots of 80 % of all plant species are arbuscular mycorrhiza fungi. They are essential constituent of the microbial soil community (Schüßler *et al.*, 2001; Wang *et al.*, 2008). Arbuscular mycorrhiza fungi connect plants into a functional web (Hegalson *et al.*, 1998), they extend plant root systems and also, assist plants uptake of soil nutrient of poor mobility, especially phosphorus (Smith and Read, 2008). van der Heijden and Horton (2009) reported that, mycorrhiza fungal networks act as a prospective channel for plant-to-plant transfer of resources. Also, AM fungi aid plant fitness by improving seedling establishment, plant fecundity, tolerance to some root pathogens, water relations and formation and stability of soil aggregates (Newsham *et al.*, 1995; Read, 1999).

The major effect of AM fungi on their host plant is a boost in plant growth and soil nutrient acquisition (Ortas *et al.*, 2001). Plants with mycorrhiza are more effective at soil nutrient uptake and water acquisition (Koide, 1991). According to Ryan and Angus (2003), phosphorus, zinc and copper uptake from soil are increased in plants with mycorrhiza association. Also, mycorrhizal plants are less predisposed to disease causing soil micoorganisms (Salami, 2002).

Inoculation of chilli pepper with native AM fungi decreased transplanting stress, accelerated the maturation stage of plants, and resulted in higher and better yield quality (Claudia *et al.*, 2009). Also, the use of AM fungi inoculum in combination (consisting of both *Glomus etunicatum* and *G. intraradices*) benefit tomato seedling transplants in a soilless nursery condition (Oseni *et al.*, 2010). The addition of arbuscular mycorrhiza inocula, for example, *G. mosseae*, *G. calendonium*, E3 endomycorrhizal fungi spores to plantations of vegetables including carrots, onions, parsnips and potatoes, among others have been found to increase the uptake of trace elements in certain conditions. They also improved crop yield (Ward *et al.*, 2001). Salami *et al.* (2007) and Oyetunji and Osonubi (2007) reported increased cassava yield in mycorrhizal treatment when compared to the uninoculated treatment. Also, Douds *et al.* (2008) reported that strawberry plants inoculated with AM fungi prior to planting produced 17 % more fruit than uninoculated controls.

Tomato, which is readily colonized by AM fungi (Edathil *et al.*, 1996; Bryla and Koide, 1998; Iqbal and Mahmood, 1998), is one of the most widely cultivated fruits in the world. The fact that tomatoes and tomato products are increasingly becoming commodities (Foreign Agricultural Service, 2003; Foreign Agricultural Service, 2004), improving agricultural sustainability through the use of AM fungi could play an important role in increasing the yield of tomato production.

1.1 Problem Statement

The increasing demand for food security and other agricultural products has led to continuous cultivation of available farmland and application of inorganic fertilizer to improve soil productivity. In some cases, such fertilizer has impacted negatively on the ecosystem, particularly the water bodies, through run-offs. In addition, they are not readily available, and where available, are expensive. There is, therefore, the need to seek for sustainable alternatives to inorganic fertilizers, hence, this study.

1.2 Expected Contribution to Knowledge

This research is expected to provide information on the feasibility of the development of mycorrhiza inoculum as a biological resource for the enhancement of agricultural productivity.

1.3 **Objectives of Study**

The objectives of this study are to:

- a) screen for and isolate indigenous Arbuscular Mycorrhizal (AM) fungi spores in a selected fallow field;
- b) characterize the isolated AM fungi;
- c) develop mycorrhiza inoculum and apply same to simulate AM on tomato plants;
- d) study and compare growth rate of tomato plants treated with mycorrhiza inoculum and inorganic fertilizer; and
- e) compare the yield performance of tomato plants treated with mycorrhiza inoculum and inorganic fertilizer.

For more information, please contact ir-help@oauife.edu.ng

© Obafemi Awolowo University, Ile-Ife, Nigeria For more information contact ir-help@oauife.edu.ng