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Abstract 

The hull-minimal ideals are discussed for the Harish-Chandra Schwartz 

algebra of a connected semi-simple Lie group G. In particular, we 

construct the basis elements for these ideals, and, when restricted to the 

Schwartz algebra of r-spherical functions on G, we characterize the hull- 

minimal ideals in terms of the cusp forms. 

1. Introduction 

Let G be a connected semi-simple Lie group with a Lie algebra, g, and a 

maximal compact subgroup K. Denote the universal enveloping algebra of the 

complexification gc ,  of g by U(gc)  and its center by 3. Define the Harish- 

Chandra Schwartz algebra, C&(G), of G as 
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for all a ,  b, E U ( g c )  and r 2 0) 

Here E and a are well known zonal spherical functions on G and f H afb 

=: f(b; .; a )  is the action of U ( g C )  realized as an algebra of invariant differential 

operators on functions on G. We define C&(G I1 K )  and g ( G )  analogously, for any 

two-sided representation t = (r, ,  T ~ )  of K. It is well-known that C&(G) is a Frechet 

algebra on G under the collection of seminorms which generalizes the 

classical Schwartz algebra on IWn, and that C&(G I/ K) and g ( G )  are closed 

subalgebras. In particular, C&(G /I K)  is commutative. 

We now consider an ideal J in an abstract complex associative algebra A and 

when exactly it is called hull-minimal. Let Prim(A) (called theprimitive ideal space) 

denote the set of all primitive ideals of A. These are the ideals which are the kernels 

of some algebraically irreducible representations of A on a vector space. Let the hull, 

h (J ) ,  of any ideal J of A be given as {I E Prim(A) : 1 2 J )  and define the kernel, 

ker(C), of any subset C of Prim(A), as ker(C) = n J .  We shall call any subset C 
JtC 

of Prim(A) closed whenever C = h(1) for some ideals I of A .  The pair (Prim(A), r )  

is a topological space when t is the well-known Jacobson topology on Prim(A). 

Hence, an ideal J of A is called hull-minimal whenever 

(a) h ( J )  = C, C i s  a closed subset of Prim(A), and 

(b) J c I for every other ideal I ofA whose hull is contained in C. 

Property (a) expresses the 'hullity' of J while (b) contains its 'minimality'. 

There is a candidate for the position of J in (b) above. If C is any preassigned closed 

subset of Prim(A), then I =: N ( C )  is well-defined and is contained in every 
h( I )=C 

member of C. However, on property (a) the best we can say is that C h(N(C)) .  

It is known that equality in the last statement holds if the algebra A is a regular semi- 

simple commutative Banach algebra ( [ S ,  p. 841). Hence we seek a general form of 

regularity on our abstract complex associative algebra A. This has led to the 

introduction of the notion of hull-kernel regularity ([6, p. 781). The problem now is 

to know the sufficient conditions on A in order to make it hull-kernel regular. 
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We study in the next section of this paper these conditions, when A is a Frechet 

algebra and thereafter seek a concrete realization for the hull-minimal ideals in the 

interesting case of A = C&(G) in terms of 3 -finite K-finite functions in Section 3. 

And since only the principal series of representations of G coming from the minimal 

parabolic subgroup of G contributes to the theory of zonal spherical functions, the 

philosophy of cusp forms implies that C&(G 11 K)  does not admit type-[ hull-minimal 

ideals in our present frame of work so that one can concentrate on C&(G) and in 

particular on C&,(G). This is the content of Section 4. 

2. Hull-minimal Ideals in a Frhchet Algebra 

The starting point of the subject is the following lemma of Ludwig et al. [7, p. 

1731 giving sufficient conditions for the hull-minimal ideal of an abstract associative 

algebra to contain a preassigned member of A. This lemma would be seen to lead 

directly to the notion of hull-kernel regular algebra. 

Lemma 2.1 ([6, p. 781 and [7, p. 1731). Let C be a closed subset of Prim(A) 

and suppose that there exist elements a, b E A such that b E ker(C) and b . a = a. 

Then every ideal I of A with h(1) c C contains a.  

It is interesting to note that the ideal I in Lemma 2.1 above already satisfies the 

reverse inclusion, h(1) c C, that was lacking in the motivational case of J ( C )  in 

which we only have C h ( J ( C ) )  as seen above. Hence we now have the 

requirement (a) above and in order to always have condition (b) as well we 

strengthen the hypotheses of Lemma 2.1 by carving it into the following definition. 

Definition 2.2. A semi-simple algebra A is said to be hull-kernel regular if for 

every closed subset C of Prim(A) and for every J E Prim(A)\C, there exist 

a = a ~ ,  b = bJ E A such that (i) b E ker(C), and (ii) b . a = a. 

It is clear that every hull-kernel regular commutative Banach algebra is 

automatically regular, if we use the map fb : A -+ A given as fb(a)  = b . a,  with a 

and b as above. In Theorem 2.3 and Propositions 2.6 and 2.9 below, we rework 

some results of Ludwig ([6, pp. 79 and 841) which are important for what follows in 

Sections 3 and 4. 

Theorem 2.3. If A is any hull-kernel regular algebra and C is any closed subset 



40 U. N. BASSEY and 0. 0. 0 Y A D A . E  

of Prirn(A), then the hull-minimal ideal j(C), associated with C, e-~ists, and  is 

generated by the elements, a ~ ,  J E C (as in De$nition 2.2). 

Proof. Let I be the ideal generated by the elements a ~ ,  J cz C. We claim that 

h(I)  = C, since if we choose any J' E C, then a ~ ,  = bJ, . aJ-  E ker(C). a ~ ,  

c ker(C) (where the inclusion holds because ker(C) is an ideal of A) and a ~ r  c J, 

i.e., a ~ l  E ker(C) and a ~ r  E J from which we conclude that J' E h(1). Hence 

h(1) c C. ... ... . (*) We also know, by Lemma 2.1, that h 

the element a~ (which was originally contained in 1 being its generator) is also 

contained in I ,  e .  1 n I' = N ( C ) ;  so that by minimality of N ( C ) ,  
h(I')=C h(I')=C 

we conclude that I = N ( C ) .  Since h(1) = h ( Z ( C ) )  = h n I' 2 C, we then 
ih l io=c 1 

have, alongside (*) above, that h(1) = C. We just set j (C) = I ,  thus completing 

the proof. 

The above result gives an efficient way of generating the hull-minimal ideals, 

j (C),  which exists in any hull-kernel regular algebra, A. Indeed, each j(C) can be 

described, for any closed subset C of Prim(A), as 

We now discuss some of the structure of j (C) in the general setting of an 

abstract hull-kernel regular algebra, A. We need the following lemma. 

Lemma 2.4. If lP be the collection of allprime ideals ofA, then Prim(A) c P. 

Proof. Let xy E J = ker(n) E Prim(A), where n is any algebraically irreducible 

representation of A. Then n(x)x(y) = n(xy) = 0; which implies n(x) = 0 or 

x(y) = 0, i.e., x E J or y E J. 

Given any two closed subsets C,, C2 of Prim(A), it is clear that the following 

subsets of A are well-defined hull-minimal ideals: j(C,),  j (C2),  j(Cl n C2), 
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j(C1 U C 2 )  and j (Cl)  n j (C2).  Naturally we may want to compare these ideals 

with one another. It is true that j (Ck)  G j ( C k ) .  j (Ck)  c j(Ck),  k = 1, 2; SO that 

(since Cl = Cl U C I )  we have j ( C k ) .  j (Ck)  = j(Ck U Ck) ,  k = 1, 2. However, it 

should be more general and appropriate to study the possibility of an equality 

between j (C l ) .  j (C2) and j(Cl U C 2 )  (or j(Cl n C 2 ) )  for any closed subsets C1,  

C2 of  prim(^). The above lemma leads to an answer to this possibility. 

Proposition 2.5. Let A be a hull-kernel regular semi-simple algebra. I f  C I ,  C2 

are any two closed subsets of Prim(A), then h( j(C1 ) . j(C2)) G h( j (Cl  U C2)) .  In 

particular, j(CI U C2) c j(Cl ) . j (C2).  

Proof. 

h ( j ( C I ) .  j (C2)) := {J E Prim(A) : J 2 j ( C 1 ) .  j(C2)} 

= {J E Prim(A) : J 2 j (Cl)or J 2 j (C2)} (by Lemma 2.4) 

= h ( j ( C I ) )  U h( j (C2) )  = Cl U C2 (being closed sets in Prim(A)) 

The second inclusion holds if we recall, from [6], that h ( E l )  h(E2)  3 

E2 G El. 

Proposition 2.5 gives a very general relationship between the hull-minimal ideal 

j(CI U C2)  and the ideal j (C1) .  j(C2). It expresses in particular that j ( C l ) .  j (Cz )  

:= {ab : a E j (CI),  b E j (C2)} is generally larger than j(C1 U C2). It is, however, 

known that if ab = ba for a E j ( C I ) ,  b E j (C2),  then the size of j ( C I ) .  j (C2)  

reduces considerably. One may want to know if this reduction could result to 

equality in Proposition 2.5. The following result answers the question in the 

affirmative. 

Proposition 2.6. Let A be an abelian hull-kernel regular algebra and let CI 

and C2 be any two closed subsets of Prim(A). Then j ( C I )  . j(C2) = j(C1 U C2).  

Proof. We only verify that j ( C l ) .  j (C2) j(Cl U C2).  Now as A is hull-kernel 
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regular, for each k = 1, 2 and any JR E Prirn(A)\Ck, there are a j ,  , bJk E A such 

that (i) bJ, E ker(Ck), ajk E A\Jk  and (ii) bJ, . U J ,  = UJ, .  From Theorem 2.3, 

we know that U J ,  generates j(Cl) while a ~ ,  generates j(C2). In particular, we 

have a j l  E j(C1) and aj2 E j(C2) SO that a := ajl . aj2 E j (C1).  j ( C 2 )  It then 

follows that (i) b := bJ, . bJ, E ker(C1) . ker(C2) c ker(CI U C2), and, as A is 

abelian, we have (ii) b . a = bJl . (bJ2 . U J ,  ) . a j 2  = (bJ1 . a j l ) (bJ2  . a j 2 )  = a ~ , a ~ ~  

= a. Thus, by Definition 2.2, we conclude that a E j(C1 U C2) whenever a E 

j (Cl )  . j (C2) as required. 

Thus the requirement of commutativity on A pays off and happens to be the 

exact condition that reduces the size of j (CI) .  j(C2), and hence closes the gap 

between j(CI U C2) and j (C1) .  j(C2). Now since the algebra in focus in this 

paper may not always be commutative as we have in the cases of all g ( G )  with 

s +- (1, l), we may want to know if the equality in Proposition 2.6 is attained 

without the requirement of commutativity, or any other requirements at all on A. The 

answer is in the affirmative. However, before introducing the framework within 

which this answer holds we present the following lemma. 

Lemma 2.7 ( [ 6 ,  p. 841). Let A be a hull-kernel regular algebra and let CI and 

C2 be any two closedsubsets of Prim(A) such that Cl c C2. Then j (CI)  c j(C2). 

Proof. Let a j  E j(C2). Then there exists J E Prim(A)\C2(c Prim(A)\C1, since 

CI c C2)  such that a ~ ,  bJ E A with bJ E ker(C2) (c ker(C,), since CI G C2), 

a j  E A\J ,  and bJ . a j  = a ~ .  Extracting the information that relates to C1 above 

we have, (i) bJ E ker(C1), U j  E A \ J  and (ii) bJ . a j  = a ~ ,  i.e., a~ E J(C1). 

Since (Cl \ (e l  n C2)) U (C2\(C1 n C2)) G (C1 U C2) the above lemma requires 

that j(CI U C2) E j((CI \(Cl fl C2)) U (C2\(Cl (7 C,))), with equality whenever 

CI n C2 = 0. A more general requirement than C1 n C2 = 0 is christened below. 

Definition 2.8. Let A be as in Definition 2.2. The subsets CI and C2 of 

 prim(^) are said to be hull-kernel separated if there exist open subsets UI and U2 

in Prim(A) such that C1 c UI,  C2 G U2 and U1 n U2 = 0. 
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The space Prim(A) is called a hull-kernel T2 -space whenever any two of its 

subsets are hull-kernel separated. The reader should compare Definition 2.8 with 

Definition 2.7.1 on p. 83 of [lo]. The attending effect of this notion on the inclusion 

of Proposition 2.5 is the following. 

Proposition 2.9. Let A be a hull-kernel regular semi-simple algebra and let C1 

and C2 be any two closed hull-kernel separated subsets o f  Prim(A). Then 

~ ( C I  ) . j(C2 = ~ ( C I  U c2). 

Proof. Set Ki = Prim(A)\Ui, for i = 1, 2 and Ui as in Definition 2.8. Then 

each Ki is closed in Prim(A) and since UI n U2 = 0, it follows that UI c K2, so 

that C2 c U1 c K2. In the same way, C2 c K1 while Prim(A) then becomes the 

union of the closed subsets KI and K2. Now as C1 U C2 is closed in Prim(A), we 

know (from Proposition 2.3) that j(CI U C2) exists. Indeed, if aJ E j(CI U C2) 

for any J E C1 U CZ, then we can find bJ E ker(Cl U C2) for which a~ P J such 

that bJ . aJ = a ~ .  

Clearly, bJ E ker(C1 U C2) = ker(CI ) f' ker(C2) so that bJ E ker(C1) and 

bJ E ker(C2). By De Morgan's rule, we also have that J E Cl and J P C2. Since 

j(K1) is well-defined (as hull-minimal ideal ofA) we have that for any J P CI,  we 

can choose bJ E ker(KI) and aJ E J with bJ . aJ = a ~ ,  i.e., a~ E j(K1) which 

immediately implies that a~ E j(C2) (as C2 c K1). In the same way, j(K2) is 

well-defined and we then have that for any J P C2, we can choose bJ E ker(K2) 

and aJ E J with the requirement bJ . aJ = a ~ ,  i.e., aJ E j(K2) j(CI) .  It then 

follows that each j(Ci), i = 1, 2, is generated by elements of the form b . a ~  . a,  

with a, b E A, J P Ci ... ... ... . (1)  

We claim that for any a E A, J1 E Cl, J2 E C2 we always have (by the choice 

of a J~ and a~~ ) that aJ1 . a . aJ E j(CI U C2 ) ... .. . ... (2), where J1 or J2 E 
2 

CI U C2. Since otherwise if J1, J2 E CI U C2, then a ~ ,  . a . aJ2 E ker(KI) and 

E ker(K2) (from above) which immediately implies that a ~ ,  . a .  aJ2 E ker(Kl U K2) 

= ker(Prim(A)) = {O}, as A is semi-simple. We conclude from (I)  and (2) that if 

c E j (Cl) .  j(C2), then c E j(C1 U C2). 
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The above entails a rough estimate of the structure of the hull-minimal ideals 

corresponding to closed subsets of the structure space of a not-necessarily 

topologized algebra, A .  However, the motivating example of a commutative Banach 

algebra ( [ 5 ,  p. 841) suggests a robust theory of hull-minimal ideals when A is 

endowed with some of the common tools of functional analysis, such as norm, a 

pseudo-norm, and an inner-product. Thus from now on one could take the direction 

of a commutative Banach algebra, which has the well-understood Gelfand theory 

([I]), or of a (group) c*-algebra culminating in a detailed understanding of the 

Pedersen ideal ([9]) or of a Frechet algebra (of functions on groups) a part of which 

has been considered by Ludwig [6]. We take the path of a Frechet algebra (of 

functions on groups) and use the situation for a commutative Banach algebra as a 

guide. More precisely, we consider the Schwartz algebra of spherical functions on a 

connected semi-simple Lie group, with finite center and discuss the structure of its 

hull-minimal ideals. Our main results contained in Sections 3 and 4, stand in 

analogue to Ludwig's own in the case of the Schwartz algebra of functions on 

connected nilpotent Lie groups and reveal, in our own case, that the well-sought 

basis of these ideals are well-known objects in the modem theory of numbers; the 

cusp forms. We now take a step closer to this objective by first looking at the exact 

nature of the hull-minimal ideals in abstract Frechet algebra, by seeking when this 

algebra is hull-kemel regular (cf. Theorem 2.3). 

Let ( p k )  be a collection of seminorms that converts A into a Frechet algebra 

30 k a 
with an involution. Define the n a p  e : A + A as e(a) = -, a E A; and call 

k=l 
k ! 

an element a E A polynomially bounded if for every k E N, there is a constant 

ck = ck (a )  > 0 such that pk(e(iha)) 5 ck(l  + I h I)CQolds for all h E R. 

Restricting the notion of polynomially bounded elements to members of a 

Banach algebra, it follows that such elements must necessarily have real spectra ([6, 
p. 801). We therefore seek a more general requirement that encompasses the real 

spectrum of an element of a Banach algebra for an element of a Frechet algebra. 

Since an involutive Banach algebra in which the spectrum of every self-adjoint 

element is a subset of R is called symmetric, we consider next a symmetric Frkchet 

algebra. 

Definition 2.10. A Frechet algebra A is said to be symmetric if it admits a 
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continuous involution and if there exists a continuous *-homomorphism, a, of A 

into a C* -algebra, C, such that specA(a) = specC(o(a)) for every a E A. (Here 

specA(a) denotes the spectrum of an element a in A , )  

The following results, whose proofs can be found in [6], have been generalized 

to a quasi-symmetric FrCchet algebra in an upcoming paper by the authors and they 

tell us exactly when a Frechet algebra admits hull-minimal ideals. 

Lemma 2.11 ([6, p. 811). Every algebraically irreducible representation of a 

symmetric Frkchet algebra A is equivalent to a submodule of a topologically 

irreducible representation o fA.  

Using this lemma one can establish that the type of Frechet algebra that admits 

hull-minimal ideals are christened as follows. 

Definition 2.12. An involutive FrCchet algebra A is said to be polynomially 

bounded if the set Ag of self-adjoint polynomially bounded elements of A is dense 

in the real subspace Ah of hermitian elements ofA 

It then follows that an involutive Schwartz algebra is a polynomially bounded 

FrCchet algebra and that the sufficient conditions on a Frechet algebra to admit hull- 

minimal ideals are contained in the following result. 

Lemma 2.13 ([6, p. 811). Every semi-simple symmetric polynomially bounded 

Frkchet algebra is hull-kernel regular. 

It then follows, from Theorem 2.3, that if A is a semi-simple polynomially 

bounded Frkchet algebra and C is any closed subset of Prim(A), then the hull- 

minimal ideal, ,j(C), exists and is generated by the elements a ~ ,  J @ C. It therefore 

means that when in possession of a Frechet algebra whose hull-minimal ideals are to 

be studied we must first and foremost establish that it is semi-simple, symmetric and 

polynomially bounded. Thus our first task in the next section is to establish that the 

semi-simple polynornially bounded Harish-Chandra algebra, %?(G), is symmetric. 

3. Hull-minimal Ideals in g ( G )  

Define the minimal regular norm, 1 1  . I ( ,  on L'(G) as 1 1  f 11 = sup11 n( f )  I l l ,  

where 1 1  . I [ ,  is the L' -norm on G and n runs through the set of non-degenerate 
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*-representations of L'(G). The completion of L'(G) with respect to 11 - 11 is a 

C* -algebra often called the group C* -algebra of G and denoted as c*(G). The 

following result is well-known. 

Theorem 3.1 (cf. [13, p. 1611). C&(G) is dense in c*(G). 

We now have the following: 

Proposition 3.2. The identity map is a continuous *-homomorphism of g ( G )  

into c*(G). 

Proof. Since both C&(G) and c*(G) are involutive algebras under the usual 

involution f H f *, given as f*(x) = f (x-I), the identity map is then a 

*-homomorphism of C&(G) into c*(G) from Theorem 3.1. For its continuity, 

let 0 be an open set in L2(G) defined by the seminorms f H (1 f l l a , b : r  

of C&(G) ([I 1, p. 3481) it follows that 0 is also an open set in C&(G). Hence the 

topology on C&(G) is in particular stronger than that on c*(G). 

Another continuous *-homomorphism of C&(G) into c*(G) is f H I( f /(a,h:r. 

Our first major result on g(G) is then the following: 

Theorem 3.3. The Harish-Chandra Schwarh algebra C&(G) is a symmetric 

Frichet algebra. 

The inequalities ~ a , b : r ( f  * * f )  s cO~a , l : r ( f  * ) ~ l , b : r + r ~ + l ( f )  

c ~ ~ a , l : r ( . f  )PI,  b:r+%+l(f for every f E C&(G), a, b E U(B@ 1, imply that the 

involution f H f * on C&(G) is continuous. Using Proposition 3.2 leads to the 

assertion. 

The importance of the last result is enormous if we recall the fact that L1(G) is 
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not symmetric in the sense of [2]. In fact armed with the conclusion of Lemma 2.13, 

we can state another result of this section. 

Proposition 3.4. The Harish-Chandra Schwartz algebra Cg(G) admits hull- 

minimal ideals, i.e., for any closed subset C of Prim(Cg(G)), the hull-minimal ideal 

j (C) exists and  is generated by the elements a ~ ,  J s f  C. 

Even though the Harish-Chandra Schwartz algebra is not commutative, our 

choice of closed subsets in Prim(C&(G)) can still lead to a fine structural relationship 

between the hull-minimal ideals of Cg(G). Indeed, we have the following: 

Corollary 3.5. If C1 and  C2 are any two closed hull-kernel separated strbsets 

of Prim(%(G)), then j (C , ) .  j (C2) = j(C1 U C2). 

Proof. See Proposition 2.9. 

It is, however, clear at this juncture that even though we have been considering 

a specific hull-kernel regular algebra in this section, as against the very abstract 

consideration in Section 2, the results of Proposition 3.4 and Corollary 3.5 are still 

not explicit enough. We would like to have a more explicit description of j (C) in 

Prim(Cg(G)) than is contained in Proposition 3.4, and thus study more structural 

relationships between them using this concrete description. Indeed, this is the 

motivation behind [6], and in the present paper, we focus on V(G)  and seek to give 

an explicit description of the basis elements of the hull-minimal ideals in 

Prim(Cg(G)). We start with the following major property of 3 -finite K-finite 

functions. 

Lemma 3.6 ([I 1, p. 3521). Let f be a 3 -jnite K-finiteftmction in Cm(G) and 

let 2f' be the set of all  h E C:(G) such that h(kxk-') = h(x), for all  k E K, 

x E G, with support arbitrarily close to 1. Then there exists h E 2 f  for which 

h * f = f .  

If we denote the subspace of C,"(G) consisting of functions with support 

arbitrarily close to 1 by C:l(G), we refer to members of 2 f  as K-centralfunctions 

in C:l(G), and note that in this terminology, the above lemma says that every 
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3 -finite K-finite functions in Cm(G) is expressible as its convolution with some 

K-central functions in Czl(G).  We define the Harish-Chandra Schwartz algebra of 

spherical functions as V(GI/K)  = { f E V(G) : f (klxk2) = f (x), k , ,  k2 E K, x E G) 

and note that 2' c V(G /I K). Since it is known that every 3 -finite K-finite f in 

C m ( G ) n  L'(G) satisfies the weak inequality and is automatically contained in 

V(G) ([12, p. 369]), we have the following upliftment of Lemma 3.6 to the level of 

the Harish-Chandra Schwartz algebra. 

Corollary 3.7. Every (non-zero) 3 ;finite K-finite function in V(G) is 

expressible as its convolution with some member of 3. 

It is, however, known that the 3 -finite K-finite functions in V(G) are 

explicitly expressed as the linear combination of the distributional characters of the 

discrete series of representations of G ([12, p. 3981). This means that every 3 -finite 

K-finite function in V(G) is in the linear span of the K-finite matrix coefficients of 

the discrete series of representations of G, which according to Harish-Chandra [3] is 

exactly the space 'V(G) := f E V(G) : IN f(xn)dn = 0, x t G = KAN 

forms. Since the space "V(G) of cusp forms is orthogonal to the matrix elements of 

the (unitary) principal series of representations of G and since the discrete series of 

representations are never spherical ([12, p. 2721) (so that the members of % ( G I  K)  

are never the matrix-elements of the discrete series of representations of G), it 

follows that "%(G) V(G / /K)  =" V(G 11 K )  = {0}, and hence that X no V(G I1 K) 

= (0). This explains that the members of 3 are associated only to the (unitary) 

principal series of the representations of G. 

We are also interested in the collection of representations of G that kill members 

of 3 now defined below. 

Definition 3.8. A representation n of G is called singular whenever f E ker(7~) 

for some f E Cc(G). We denote the set of singular representations of G as 

If X* denotes the set of representations of G whose kernel spans 2, then 

2'* c We also have the following. 
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Theorem 3.9. The set GSing is closed in G. 

Proof. Let {najaGn be a sequence of representations in Gsing and let 

lim,,, na = x, in the topology induced on Gsing as a subset of G - Prim(C&(G)) 

([8, p. 2371). Then no is a representation of G (due to the continuity of each n,) 

and given any E > 0, there are integers N, = N,(E) > 0 and N2 = N2(&) > 0 such 

E that i ln,(f)II<F,  forall a >  NI and / /n . ( f ) -n , ( f ) I I c?  forall a >  N2, and 
2 

some f E C,(G). Set N = min{N1, N2), then for all a > N, we have that 11 n,(f) 11 

=II(n~(f)-na(f))+na(f)II~IIno(f)-~a(f)II+IIna(f)II<~~ i.e.2~0 ~Gs ing .  

The above theorem assures us that j(GSing) exists in C&(G). Now let Gd be 

subset of G consisting of the discrete series of representations of G. Then the 

following holds. 

Proposition 3.10. Ging n Gd = 0. 

Proof. Some of the principal series of representation of G are contained in 

Ging (because "3 = {0}) and since GSing is closed in G, it cannot contain a 

discrete series of representation of G. 

The last result of this section is then the following. 

Theorem 3.11. Let C be a closed subset of 6 containing X*  as a dense 

subset. Then the hull-minimal ideal, j(C) of 'if(G), corresponding to C is the 

linear span ofthe 3 -finite K-Jinitef2,nctions in C&(G). 

Proof. Let C be as in the hypothesis. Then we can choose h E X*  such that 

h E ker(n), for every n E G. In particular, h E ker(n) for every n E H*. Since 

X*  is dense in C, we conclude that h E ker(.rc) for every x E C, i.e., h E ker(C). 

Since we already know, from Lemma 3.6, that h * f = f for 3 -finite K-finite 

hnctions in '&(G), the assertion holds. 
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The hull-minimal ideals, j (C) ,  corresponding to a closed subset C of 6 and 

containing 3' (as in Theorem 3.1 1 above) shall be called the type-1 hull-minimal 

ideals of %'(G). This is due to other types considered in [6] not included in this 

work. 

Corollary 3.12. Every type-I hull-minimal ideal in %'(G) is a 3(g)-module of 

%'(GI. 

Proof. It is well known (cf. [ I  I]) that V ( G )  is a U(g)  -module. Now since the 

basis elements of the hull-minimal ideals of %(G) are 3 -finite K-finite functions in 

%'(G) which are essentially the linear span of the matrix-coefficients of the discrete 

series of representations of G ([12, p. 3991) it follows from the transformation 

satisfied by these matrix coefficients under the action of 3(g) that the result holds. 

0 

4. Hull-minimal Ideals in %'(GI/ K )  and C&,(G) 

Let s = ( T ~ ,  9) be a double representation of K on a finite dimensional vector 

space, W. By a T-spherical function we mean a continuous function f : G 4 W 

such that f (k lxk2)  = ~ , ( k , )  f (x )T2(k2)  and which is also an eigenfunction for a 

suitable algebra of operators on G. We denote the Schwartz algebra consisting of 

7-spherical functions on G by q ( G ) .  Clearly yl , l ) (G) = %'(GNK)  and is a 

commutative subalgebra of 'R(G).  However, the Harish-Chandra philosophy of 

cusp fonns gives the following. 

Proposition 4.1. 5?(G 11 K )  does not admit type-1 hull-minimal ideals. 

Proof. It follows from the use of "%'(GI/ K )  = (0) in Theorem 3.1 1. 

However, %'(GI/ K )  may have other types of hull-minimal ideals (see [ 6 ] ) .  

Also, what is not available in the subalgebra %'(GIIK) is contained in C&,(G) for 

T # ( 1 ,  1 )  since due to the relationship of the Eisenstein integrals on G with the 

discrete series representations of G we have that " K ( G )  ;t {O) for all 7 # (1, I ) .  

Indeed, Theorem 3.1 1 holds for %'(G) replaced with %(G),  T + (1, 1 ) .  
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Remarks 4.2. (a) It is clear from the above analysis that the study of the hull- 

minimal ideals in both C&(G) and g ( G ) ,  r # (1, 1) does not necessarily require 

the direct involvement of the Fourier transform of the hnctions concerned as 

unavoidably used by Ludwig [6] in the connected nilpotent Lie group case. This is 

simply because of the well-known developed theory of the 3 -finite K-finite 

functions in %'(G). Thus the result of Theorem 3.11 suggests that the Ludwig's 

functions in the Schwartz algebra S(G), of a connected nilpotent Lie group G that 

serve as the basis of his hull-minimal ideals are analogues of our present 3 -finite 

K-finite functions in C&(G), and their properties, such as their differential equations 

and hence their explicit representations, could be sought in this light. 

(b) In order to have a good grasp on the hull-minimal ideals in g ( G )  it is 

pertinent to have a direct involvement of the Eisenstein integrals and the discrete 

series of representations of G attached to these integrals. This will be the subject of 

another paper. 
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