Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gordor, Benony Kwaku"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A Comparative Study of the Means of Multivariate Normal Distributions
    (Obafemi Awolowo University, 1985) Gordor, Benony Kwaku; Chattopadhyay, A. K.
    This work is a comparative study of the means of two multivariate normal distributions. Since this distribution is analogous to the univariate distribution, this latter distribution has been included in the real work. The method considered is that of testing of hypothesis concerning the population means and finding confidence intervals for these parameters on the basis of two independent samples from two populations with these distributions. The univariate normal distribution is specified by two parameters - the mean, x and the variance a2. Likewise its multivariate analogues specified by two vector-valued parameters - the mean and the variance-covariance matrix E. Hence the problem of comparing the means of two (multivariate or univariate) normal distributions has been discussed under different conditions of the variance-covariance matrices (and variances in the case of univariate) of the two distributions. As an example, an analysis o+ some data which were collected on students from a secondary school has been given.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A Comparative Study of the Means of Multivariate Normal Distributions.
    (Obafemi Awolowo University, 1985) Gordor, Benony Kwaku
    This work is a comparative study of the means of two multivariate normal distributions. Since this distribution is analogous to the univariate distribution, this latter distribution has been included in the real work. The method considered is that of testing of hypothesis concerning the population means and finding confidence intervals for these parameters on the basis of two independent samples from two populations with these distributions. The univariate normal distribution is specified by two parameters - the mean, X and the variance a2. Likewise its multivariate analogues specified by two vector-valued parameters - the mean and the variance-covariance matrix E. Hence the problem of comparing the means of two (multivariate or univariate) normal distributions has been discussed under different conditions of the variance-covariance matrices (and variances in the case of univariate) of the two distributions. As an example, an analysis o+ some data which were collected on students from a secondary school has been given.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A Comparative Study of the Means of Multivariate normal Distributions.
    (Obafemi Awolowo University Department of Mathematics, 1985) Gordor, Benony Kwaku
    This work is a comparative study of the means of two multivariate normal distributions. Since this distribution is analogous to the univariate distribution, this latter distribution has been included in the real work. The method considered is that of testing of hypothesis concerning the population means and finding confidence intervals for these parameters on the basis of two independent samples from two populations with these distributions. The univariate normal distribution is specified by two parameters - the mean, X and the variance a2. Likewise its multivariate analogues specified by two vector-valued parameters - the mean and the variance-covariance matrix E. Hence the problem of comparing the means of two (multivariate or univariate) normal distributions has been discussed under different conditions of the variance-covariance matrices (and variances in the case of univariate) of the two distributions. As an example, an analysis o+ some data which were collected on students from a secondary school has been given.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A comparative study of the means of Multivariate Normal Distributions.
    (Obafemi Awolowo University, Department of Mathematics, 1985) Gordor, Benony Kwaku
    This work is a comparative study of the means of two multivariate normal distributions. Since this distribution is analogous to the univariate distribution, this latter distribution has been included in the real work. The method considered is that of testing of hypothesis concerning the population means and finding confidence intervals for these parameters on the basis of two independent samples from two populations with these distributions. The univariate normal distribution is specified by two parameters - the mean, X and the variance a2. Likewise its multivariate analogues specified by two vector-valued parameters - the mean and the variance-covariance matrix E. Hence the problem of comparing the means of two (multivariate or univariate) normal distributions has been discussed under different conditions of the variance-covariance matrices (and variances in the case of univariate) of the two distributions. As an example, an analysis o+ some data which were collected on students from a secondary school has been given.
Quick Links
  • OAU Website
  • Library Website
  • OPAC
Archives
  • Databases
  • Newspaper
Address

Hezekiah Oluwasanmi Library,
Obafemi Awolowo University,
P.M.B. 13, Ile-Ife Osun State, Nigeria.
library@oauife.edu.ng

HOL Library © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback