Browsing by Author "Olasunkanmi, Lukman O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessExperimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium(Elsevier, 2016-05) Sasikumar, Y.; Olasunkanmi, Lukman O.; Bahadur, Indra; Kabanda, Mwadham MInhibition of mild steel corrosion in 1 M HCl solution by some alkylimidazolium-based ionic liquids (ILs) namely 1-ethyl-3-methylimidazolium ethylsulfate [EMIM]+[EtSO4]−, 1-ethyl-3-methylimidazolium acetate [EMIM]+[Ac]−, 1-butyl-3-methylimidazolium thiocyanate [BMIM]+[SCN]−, 1-butyl-3-methylimidazolium acetate [BMIM]+[Ac]− and 1-butyl-3-methylimidazolium dicyanamide [BMIM]+[DCA]− was investigated using electrochemical, spectroscopic, surface morphology, quantum chemical calculations, quantitative structure activity relationship (QSAR) and Monte Carlo simulation methods. The studied ILs showed appreciable inhibition efficiencies within the range of concentrations considered. Polarization measurements showed that the studied ILs are mixed-type inhibitors, that is, they inhibit both the anodic mild steel dissolution and cathodic hydrogen evolution reactions. The adsorption of the ILs on mild steel affords competitive physisorption and chemisorption processes and obeyed the Langmuir adsorption isotherm. Spectroscopic studies confirmed chemical interactions between the ILs and mild steel, while the scanning electron microscopy (SEM) images revealed the formation of protective film of the inhibitors on mild steel surface. Theoretical quantum chemical calculations, QSAR analyses and Monte Carlo simulations studies were used to correlate experimental results. The best fit QSAR equations are functions of molecular weight, fraction of electrons transferred from the inhibitor to the metal and dipole moment of the ILs.
- ItemOpen AccessPhthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine(Springer publishing, 2017-03-03) Mphuthi, Ntsoaki; Adekunle, Abolanle S.; Fayemi, Omolola E.; Olasunkanmi, Lukman O.; Ebenso, Eno E.The electrocatalytic properties of metal oxides (MO=Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75μM) which compared favourably with literature, good sensitivity (1.45μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.