On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

Abstract
Not all differential equations can be solved analytically, to overcome this problem, there is need to search for an accurate approximate solution. Approach: The objective of this study was to find an accurate approximation technique (scheme) for solving linear differential equations. By exploiting the Trigonometric identity property of the Chebyshev polynomial, we developed a numerical scheme referred to as the pseudo-pseudo-spectral method. Results: With the scheme developed, we were able to obtain approximate solution for certain linear differential equations. Conclusion: The numerical scheme developed in this study competes favorably with solutions obtained with standard and well known spectral methods. We presented numerical examples to validate our results and claim.
Description
Keywords
Chebyshev polynomial, Linear ordinary differential equations, Spectral method, Pseudo-spectral method, Pseudo-pseudo-spectral method
Citation
Ogundare, B. S. (2009). On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations. Journal of Mathematics and Statistics, 5(2): 136 - 140.
Collections