On PAPR Reduction in Pilot-Assisted Optical OFDM Communication Systems

No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
The DCO-OFDM and ACO-OFDM time domain signals approach Gaussian and half-Gaussian distributions respectively. The PA technique uses P iterations of a pilot sequence to rotate the phase of U data symbols within a PA OOFDM frame and select the frame with the least PAPR. Thus, we utilize order statistics to characterize the PAPR distributions of the PA DCO-OFDM and ACO-OFDM system. The PA technique results in higher reduction in PAPR for high P but at the expense of increased complexity. In the theoretical framework developed, we are able to determine P that gives reasonable PAPR reduction gain. The theoretical analysis of PAPR reduction effects on the average optical and electrical signal power is studied. Results show that the PA technique is capable of reducing the optical energy per bit to noise power spectral density Eb(opt)/N0 ratio required to meet target bit-error-rate (BER) in an additive white Gaussian noise (AWGN) channel. Comparisons of the analytical results of PA O-OFDM signal with that of computer simulations show very good agreement.
Description
IEEE AccessVolume PP(99):1-1 · 185 Reads  International Journal
Keywords
optical orthogonal frequency division multiplexing (O-OFDM, asymmetrically clipped
Citation
Collections